Mecanismos de envejecimiento de la piel

Autores/as

  • Ana Cecilia Mesa-Arango Universidad de Antioquia
  • Sindy Viviana Flórez-Muñoz Universidad de Antioquia
  • Gloria Sanclemente Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.iatreia.v30n2a05

Palabras clave:

daño del ADN, especies de oxígeno reactivas (EOR), fotoenvejecimiento, fotoprotección, productos naturales, radiación ultravioleta (UV)

Resumen


Skin aging is an inevitable biological phenomenon of human life that results from either the age-dependent decline of cell function (intrinsic aging) or from cumulative exposure to external harmful influences (extrinsic aging). Intrinsic and extrinsic factors act synergistically to induce skin changes that manifest clinically as burns, erythema, hyperpigmentation, telangiectasia, skin dryness or sagging, coarse wrinkles, skin texture changes or eventually as skin cancer. The molecular mechanisms of both types of skin aging are similar. This review focuses on intrinsic and extrinsic mechanisms of skin aging, and on current and new perspectives for prevention and treatment options extracted from natural products. 

|Resumen
= 1310 veces | PDF (ENGLISH)
= 758 veces| | XHTML (ENGLISH)
= 17 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Ana Cecilia Mesa-Arango, Universidad de Antioquia

Docente, Grupo de Investigación Dermatológica, Facultad de Medicina. Universidad de Antioquia, Medellín, Colombia. 

Sindy Viviana Flórez-Muñoz, Universidad de Antioquia

Estudiante, Grupo de Investigación Dermatológica. Facultad de Medicina. Universidad de Antioquia, Medellín, Colombia. 

Gloria Sanclemente, Universidad de Antioquia

Docente, Grupo de Investigación Dermatológica, Facultad de Medicina. Universidad de Antioquia, Medellín, Colombia.

Citas

(1.) Nikolakis G, Makrantonaki E, Zouboulis CC. Skin mirrors human aging. Horm Mol Biol Clin Investig. 2013 Dec;16(1):13-28. DOI 10.1515/hmbci-2013-0018.

(2.) Hashizume H. Skin aging and dry skin. J Dermatol. 2004 Aug;31(8):603-9.

(3.) Kohl E, Steinbauer J, Landthaler M, Szeimies RM. Skin ageing. J Eur Acad Dermatol Venereol. 2011 Aug;25(8):873-84. DOI 10.1111/j.1468- 3083.2010.03963.x.

(4.) Makrantonaki E, Zouboulis CC. William J. Cunliffe Scientific Awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology. 2007;214(4):352-60.

(5.) Poljšak B, Dahmane RG, Godić A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat. 2012;21(2):33-6.

(6.) Farage MA, Miller KW, Elsner P, Maibach HI. Functional and physiological characteristics of the aging skin. Aging Clin Exp Res. 2008 Jun;20(3):195-200.

(7.) Quan T, Shao Y, He T, Voorhees JJ, Fisher GJ. Reduced expression of connective tissue growth factor (CTGF/ CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol. 2010 Feb;130(2):415-24. DOI 10.1038/jid.2009.224.

(8.) Ponnappan S, Ponnappan U. Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal. 2011 Apr;14(8):1551-85. DOI 10.1089/ars.2010.3228.

(9.) Bernhard D, Moser C, Backovic A, Wick G. Cigarette smoke--an aging accelerator? Exp Gerontol. 2007 Mar;42(3):160-5.

(10.) Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008 Apr;30(2):87-95. DOI 10.1111/j.1468- 2494.2007.00415.x.

(11.) Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002 Apr;123(7):801-10.

(12.) Tarbuk A, Grancarić AM, Situm M. Discrepancy of whiteness and UV protection in wet state. Coll Antropol. 2014 Dec;38(4):1099-105.

(13.) Costa A, Eberlin S, Clerici SP, Abdalla BM. In vitro effects of infrared A radiation on the synthesis of MMP- 1, catalase, superoxide dismutase and GADD45 alpha protein. Inflamm Allergy Drug Targets. 2015;14(1):53-9.

(14.) Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013 Jan;12(1):54-64. DOI 10.1039/c2pp25152c.

(15.) Schalka S, Steiner D, Ravelli FN, Steiner T, Terena AC, Marçon CR, et al. Brazilian consensus on photoprotection. An Bras Dermatol. 2014 Nov-Dec;89(6 Suppl 1):1-74. DOI 10.1590/abd1806-4841.20143971.

(16.) McCallion R, Li Wan Po A. Dry and photo-aged skin: manifestations and management. J Clin Pharm Ther. 1993 Feb;18(1):15-32.

(17.) Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H. Light, including ultraviolet. J Autoimmun. 2010 May;34(3):J247-57. DOI 10.1016/j.jaut.2009.11.011.

(18.) Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, et al. Sunburn and p53 in the onset of skin cancer. Nature. 1994 Dec;372(6508):773-6.

(19.) Krämer M, Stein B, Mai S, Kunz E, König H, Loferer H, et al. Radiation-induced activation of transcription factors in mammalian cells. Radiat Environ Biophys. 1990;29(4):303-13.

(20.) Cadet J, Wagner JR. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii:a012559. DOI 10.1101/cshperspect.a012559.

(21.) Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997 Apr;18(4):811-6.

(22.) Chen L, Hu JY, Wang SQ. The role of antioxidants in photoprotection: a critical review. J Am Acad Dermatol. 2012 Nov;67(5):1013-24. DOI 10.1016/j.jaad.2012.02.009.

(23.) Kulms D, Schwarz T. Molecular mechanisms of UV- induced apoptosis. Photodermatol Photoimmunol Photomed. 2000 Oct;16(5):195-201.

(24.) Sárdy M. Role of matrix metalloproteinases in skin ageing. Connect Tissue Res. 2009;50(2):132-8. DOI 10.1080/03008200802585622.

(25.) Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 Jan;21(1):103-15. DOI 10.1038/cr.2010.178.

(26.) Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc. 2009 Aug;14(1):20-4. DOI 10.1038/jidsymp.2009.8.

(27.) Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res. 2005 Apr;571(1- 2):107-20.

(28.) Aubin F. Mechanisms involved in ultraviolet light- induced immunosuppression. Eur J Dermatol. 2003;13(6):515-23.

(29.) Larsson P, Ollinger K, Rosdahl I. Ultraviolet (UV)A- and UVB-induced redox alterations and activation of nuclear factor-kappaB in human melanocytes- protective effects of alpha-tocopherol. Br J Dermatol. 2006 Aug;155(2):292-300.

(30.) Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997 Nov;337(20):1419-28.

(31.) Millis AJ, Hoyle M, McCue HM, Martini H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp Cell Res. 1992 Aug;201(2):373-9.

(32.) Chung JH, Kang S, Varani J, Lin J, Fisher GJ, Voorhees JJ. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000 Aug;115(2):177-82.

(33.) Uitto J. The role of elastin and collagen in cutaneous aging: intrinsic aging versus photoexposure. J Drugs Dermatol. 2008 Feb;7(2 Suppl):s12-6.

(34.) Krutmann J, Morita A, Chung JH. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J Invest Dermatol. 2012 Mar;132(3 Pt 2):976-84. DOI 10.1038/jid.2011.394.

(35.) Shreedhar V, Giese T, Sung VW, Ullrich SE. A cytokine cascade including prostaglandin E2, IL-4, and IL- 10 is responsible for UV-induced systemic immune suppression. J Immunol. 1998 Apr;160(8):3783-9.

(36.) Iwai I, Hatao M, Naganuma M, Kumano Y, Ichihashi M. UVA-induced immune suppression through an oxidative pathway. J Invest Dermatol. 1999 Jan;112(1):19-24.

(37.) Noonan FP, Bucana C, Sauder DN, De Fabo EC. Mechanism of systemic immune suppression by UV irradiation in vivo. II. The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. J Immunol. 1984 May;132(5):2408-16.

(38.) Meunier L, Bata-Csorgo Z, Cooper KD. In human dermis, ultraviolet radiation induces expansion of a CD36+ CD11b+ CD1- macrophage subset by infiltration and proliferation; CD1+ Langerhans-like dendritic antigen-presenting cells are concomitantly depleted. J Invest Dermatol. 1995 Dec;105(6):782-8.

(39.) Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB- induced immunosuppression. Kobe J Med Sci. 2013 Apr;59(1):E1-9.

(40.) Slominski AT. Ultraviolet radiation (UVR) activates central neuro-endocrine-immune system. Photodermatol Photoimmunol Photomed. 2015 May;31(3):121-3. DOI 10.1111/phpp.12165.

(41.) Freiman A, Bird G, Metelitsa AI, Barankin B, Lauzon GJ. Cutaneous effects of smoking. J Cutan Med Surg. 2004 Nov-Dec;8(6):415-23.

(42.) Metelitsa AI, Lauzon GJ. Tobacco and the skin. Clin Dermatol. 2010 Jul-Aug;28(4):384-90. DOI 10.1016/j.clindermatol.2010.03.021.

(43.) Lønnberg AS, Skov L, Skytthe A, Kyvik KO, Pedersen OB, Thomsen SF. Smoking and risk for psoriasis: a population-based twin study. Int J Dermatol. 2016 Feb;55(2):e72-8. DOI 10.1111/ijd.13073.

(44.) Morita A, Torii K, Maeda A, Yamaguchi Y. Molecular basis of tobacco smoke-induced premature skin aging. J Investig Dermatol Symp Proc. 2009 Aug;14(1):53-5. DOI 10.1038/jidsymp.2009.13.

(45.) Elias PM, Friend DS. The permeability barrier in mammalian epidermis. J Cell Biol. 1975 Apr;65(1):180-91.

(46.) Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta. 2006 Dec;1758(12):2080-95.

(47.) Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients. 2010 Aug;2(8):903-28. DOI 10.3390/nu2080903.

(48.) Varani J, Perone P, Griffiths CE, Inman DR, Fligiel SE, Voorhees JJ. All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. Adult skin from sun-protected and sun- exposed sites responds in an identical manner to RA while neonatal foreskin responds differently. J Clin Invest. 1994 Nov;94(5):1747-56.

(49.) Ricciarelli R, Maroni P, Ozer N, Zingg JM, Azzi A. Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition. Free Radic Biol Med. 1999 Oct;27(7-8):729-37.

(50.) Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, et al. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr. 1990 Sep;52(3):557-63.

(51.) Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up- regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005 Jul;19(9):1067-77.

(52.) Mitchnick MA, Fairhurst D, Pinnell SR. Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent. J Am Acad Dermatol. 1999 Jan;40(1):85-90.

(53.) Pickart L, Vasquez-Soltero JM, Margolina A. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxid Med Cell Longev. 2012;2012:324832. DOI 10.1155/2012/324832.

(54.) Rafferty TS, McKenzie RC, Hunter JA, Howie AF, Arthur JR, Nicol F, et al. Differential expression of selenoproteins by human skin cells and protection by selenium from UVB-radiation-induced cell death. Biochem J. 1998 May;332 ( Pt 1):231-6.

(55.) Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, et al. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem. 2014 Jan;14(1):77-96.

(56.) Young AR. Chromophores in human skin. Phys Med Biol. 1997 May;42(5):789-802.

(57.) Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;2014:860479. DOI 10.1155/2014/860479.

(58.) Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008 May-Jun;84(3):539-49. DOI 10.1111/j.1751-1097.2007.00226.x.

(59.) Kobayashi N, Muramatsu T, Yamashina Y, Shirai T, Ohnishi T, Mori T. Melanin reduces ultraviolet-induced DNA damage formation and killing rate in cultured human melanoma cells. J Invest Dermatol. 1993 Nov;101(5):685-9.

(60.) Jeong C, Di Rienzo A. Adaptations to local environments in modern human populations. Curr Opin Genet Dev. 2014 Dec;29:1-8. DOI 10.1016/j.gde.2014.06.011.

(61.) Sanclemente G, Falabella R, Garcia JJ. Vitiligo. Rev Col Dermatol.2004;12(4):12-22.

(62.) Yamaguchi Y, Beer JZ, Hearing VJ. Melanin mediated apoptosis of epidermal cells damaged by ultraviolet radiation: factors influencing the incidence of skin cancer. Arch Dermatol Res. 2008 Apr;300 Suppl 1:S43-50.

(63.) Reichrath J, Rass K. Ultraviolet damage, DNA repair and vitamin D in nonmelanoma skin cancer and in malignant melanoma: an update. Adv Exp Med Biol. 2014;810:208-33.

(64.) Fischer TW, Zbytek B, Sayre RM, Apostolov EO, Basnakian AG, Sweatman TW, et al. Melatonin increases survival of HaCaT keratinocytes by suppressing UV-induced apoptosis. J Pineal Res. 2006 Jan;40(1):18-26.

(65.) Janjetovic Z, Nahmias ZP, Hanna S, Jarrett SG, Kim TK, Reiter RJ, et al. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. J Pineal Res. 2014 Aug;57(1):90-102. DOI 10.1111/jpi.12146.

(66.) Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994 Jan;102(1):122-4.

(67.) Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer. 2001 Oct;1(1):22-33.

(68.) Takahashi Y, Moriwaki S, Sugiyama Y, Endo Y, Yamazaki K, Mori T, et al. Decreased gene expression responsible for post-ultraviolet DNA repair synthesis in aging: a possible mechanism of age-related reduction in DNA repair capacity. J Invest Dermatol. 2005 Feb;124(2):435-42.

(69.) Melis JP, van Steeg H, Luijten M. Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal. 2013 Jun;18(18):2409-19. DOI 10.1089/ars.2012.5036.

(70.) el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov;75(4):817-25.

(71.) Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science. 1999 Aug;285(5429):898-900.

(72.) Brash DE. Cellular proofreading. Nat Med. 1996 May;2(5):525-6.

(73.) Reeve VE, Tyrrell RM. Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse. Proc Natl Acad Sci U S A. 1999 Aug;96(16):9317-21.

(74.) Ramos-e-Silva M, Celem LR, Ramos-e-Silva S, Fucci-da- Costa AP. Anti-aging cosmetics: facts and controversies. Clin Dermatol. 2013 Nov-Dec;31(6):750-8. DOI 10.1016/j.clindermatol.2013.05.013.

(75.) Jadoon S, Karim S, Bin Asad MH, Akram MR, Khan AK, Malik A, et al. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity. Oxid Med Cell Longev. 2015;2015:709628. DOI 10.1155/2015/709628.

(76.) Leelapornpisid P, Wickett RR, Chansakaow S, Wongwattananukul N. Potential of native Thai aromatic plant extracts in antiwrinkle body creams. J Cosmet Sci. 2015 Jul-Aug;66(4):219-31.

(77.) Sánchez-Campillo M, Gabaldon JA, Castillo J, Benavente-García O, Del Baño MJ, Alcaraz M, et al. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol. 2009 Feb;47(2):386-92. DOI 10.1016/j.fct.2008.11.026.

(78.) Schäfer M, Werner S. Nrf2--A regulator of keratinocyte redox signaling. Free Radic Biol Med. 2015 Nov;88(Pt B):243-52. DOI 10.1016/j.freeradbiomed.2015.04.018.

(79.) Tundis R, Loizzo MR, Bonesi M, Menichini F. Potential role of natural compounds against skin aging. Curr Med Chem. 2015;22(12):1515-38.

(80.) Amaro-Ortiz A, Yan B, D’Orazio JA. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules. 2014 May;19(5):6202-19. DOI 10.3390/molecules19056202.

(81.) Lee S, Lim JM, Jin MH, Park HK, Lee EJ, Kang S, et al. Partially purified paeoniflorin exerts protective effects on UV-induced DNA damage and reduces facial wrinkles in human skin. J Cosmet Sci. 2006 Jan- Feb;57(1):57-64.

(82.) Shweta K, Swarnlata S. Efficacy Study of Sunscreens Containing Various Herbs for Protecting Skin from UVA and UVB Sunrays. Pharmacogn Mag. 2009;5(19):238-48. DOI 10.1155/2015/709628.

(83.) Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev. 2011 Jul;5(10):164-73. DOI 10.4103/0973-7847.91114.

(84.) Arad S, Konnikov N, Goukassian DA, Gilchrest BA. Quantification of inducible SOS-like photoprotective responses in human skin. J Invest Dermatol. 2007 Nov;127(11):2629-36.

(85.) Brieva A, Philips N, Tejedor R, Guerrero A, Pivel JP, Alonso-Lebrero JL, et al. Molecular basis for the regenerative properties of a secretion of the mollusk Cryptomphalus aspersa. Skin Pharmacol Physiol. 2008;21(1):15-22.

(86.) Cruz MC, Sanz-Rodríguez F, Zamarrón A, Reyes E, Carrasco E, González S, et al. A secretion of the mollusc Cryptomphalus aspersa promotes proliferation, migration and survival of keratinocytes and dermal fibroblasts in vitro. Int J Cosmet Sci. 2012 Apr;34(2):183-9. DOI 10.1111/j.1468-2494.2011.00699.x.

(87.) Malerich S, Berson D. Next generation cosmeceuticals: the latest in peptides, growth factors, cytokines, and stem cells. Dermatol Clin. 2014 Jan;32(1):13-21. DOI 10.1016/j.det.2013.09.003.

(88.) Lintner K, Peschard O. Biologically active peptides: from a laboratory bench curiosity to a functional skin care product. Int J Cosmet Sci. 2000 Jun;22(3):207-18. DOI 10.1046/j.1467-2494.2000.00010.x.

(89.) Bupesh G, Vijayakumar TS, Manivannan S, Beerammal M, Manikandan E, Shanthi P, et al. Identification of Secondary Metabolites, Antimicrobial and Antioxidant Activity of Grape Fruit (Vitis vinifera) Skin Extract. Dia Obe Int J. 2016;1(1):DOIJ-MS-ID-000102.

(90.) Kanlayavattanakul M, Lourith N. An update on cutaneous aging treatment using herbs. J Cosmet Laser Ther. 2015;17(6):343-52. DOI 10.3109/14764172.2015.1039036.

(91.) Rojas J, Londoño C, Ciro Y. The health benefits of natural skin UVA photoprotective compounds found in botanical sources. Int J Pharm Pharm Sci. 2016;8(3):13-23.

(92.) Centro de Investigación de Excelencia CENIVAM. Aplicaciones cosmecéuticas de los aceites esenciales y compuestos naturales en el cuidado de la piel [Internet]. Bucaramanga: CENIVAM; 2008 [consultado 2026 Ago 5]. Disponible en: http://cenivam.uis.edu. co/cenivam/documentos/libros/2.pdf

(93.) Avila Acevedo JG, Castañeda CM, Benitez FJ, Durán DA, Barroso VR, Martínez CG, et al. Photoprotective activity of Buddleja scordioides. Fitoterapia. 2005 Jun;76(3-4):301-9.

(94.) da Costa César I, Castro Braga F, Vianna-Soares C, de Aguiar Nunan E, Pianetti G, Moreira-Campos LM. Quantitation of genistein and genistin in soy dry extracts by UV-Visible spectrophotometric method. Quím Nova. 2008;31(8):1933-6. DOI 10.1590/S0100-40422008000800003.

(95.) Puertas M MA, Mesa V AM, Sáez V JA. In vitro radical scavenging activity of two Columbian Magnoliaceae. Naturwissenschaften. 2005 Aug;92(8):381-4.

(96.) Puertas-Mejía M, Hillebrand S, Stashenko E, Winterhalter P. In vitro radical scavenging activity of essential oils from Columbian plants and fractions from oregano (Origanum vulgare L.) essential oil. Flavour Frag J. 2002 Sept-Oct;17(5):380-4. DOI 10.1002/ffj.1110.

(97.) Perico-Franco LS, Rojas JL, Cerbón MA, González- Sánchez I, Valencia-Islas NA. Antioxidant Activity and Protective Effect on Cell and DNA Oxidative Damage of Substances isolated from Lichens of Colombian páramo. UK J Pharm Biosci. 2015;3(4):9-17.

(98.) Rojas JL, Díaz-Santos M, Valencia-Islas NA. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. UK J Pharm Biosci. 2015;3(4):18- 26. DOI 10.20510/ukjpb/3/i4/89454.

Publicado

2017-04-11

Cómo citar

1.
Mesa-Arango AC, Flórez-Muñoz SV, Sanclemente G. Mecanismos de envejecimiento de la piel. Iatreia [Internet]. 11 de abril de 2017 [citado 19 de agosto de 2022];30(2):160-7. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/26632

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.