Vesículas extracelulares endoteliales inducidas por anticuerpos antifosfolípidos: vías implicadas en su producción y potencial procoagulante

  • Daniel Álvarez-Jaramillo Universidad de Antioquia
  • Carolina Rúa Universidad de Antioquia
  • Ángela P Cadavid Universidad de Antioquia https://orcid.org/0000-0003-3081-0840
Palabras clave: Síndrome Antifosfolípido, Vesículas Extracelulares, Coagulación Sanguínea, Células Endoteliales, Transducción de Señal

Resumen

La hemostasia es el equilibrio fisiológico de un conjunto de procesos procoagulantes que tienen como finalidad evitar la pérdida de sangre ante la disrupción del circuito vascular, al cual se acoplan procesos anticoagulantes que simultáneamente previenen la formación o estabilización inusitada de coágulos que impidan el flujo sanguíneo normal1. Existen diferentes trastornos que se asocian a la ruptura del equilibrio hemostático, entre ellos destaca el síndrome antifosfolípido (SAF), enfermedad autoinmune que clásicamente se ha relacionado con un estado procoagulante, solo o en conjunto con episodios de morbilidad gestacional2. Diferentes autores han realizado esfuerzos para entender la relación entre inmunidad y coagulación, logrando explicar tentativamente por múltiples mecanismos como los anticuerpos antifosfolípidos (aAFL), causa directa del SAF, conducen al desarrollo de trombosis vascular3–9. Dentro de estos mecanismos la activación directa del endotelio, y asociado a ello, la liberación de vesículas extracelulares (VE), ha sido un foco de interés reciente

|Resumen
= 25 veces | PDF
= 24 veces|

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Daniel Álvarez-Jaramillo , Universidad de Antioquia

Estudiante de maestría en ciencias básicas biomédicas. Grupo Reproducción, Universidad de Antioquia

Carolina Rúa, Universidad de Antioquia

Microb. MSc. Grupo de Investigación en Trombosis, Universidad de Antioquia, cotutora

Ángela P Cadavid, Universidad de Antioquia

MD, MSc. Dr.Sci Coordinadora Grupo Reproducción y docente Universidad de Antioquia, tutora

Citas

(1) Lippi G, Adcock D, Favaloro EJ. Understanding the “philosophy” of laboratory hemostasis. Diagnosis. 2019;6(3):223-226. doi:10.1515/dx-2018-0099.

(2) Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306. doi:10.1111/j.1538-7836.2006.01753.x.

(3) Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Invest. 2011;121(1):120-131. doi:10.1172/JCI39828.

(4) Lambrianides A, Carroll CJ, Pierangeli SS, et al. Effects of Polyclonal IgG Derived from Patients with Different Clinical Types of the Antiphospholipid Syndrome on Monocyte Signaling Pathways. J Immunol. 2010;184(12):6622-6628. doi:10.4049/jimmunol.0902765.

(5) Prinz N, Clemens N, Canisius A, Lackner KJ. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells: Lessons from the antiphospholipid syndrome. Thromb Haemost. 2013;109(3):525-531. doi:10.1160/TH12-06-0421.

(6) Zhang W, Gao F, Lu D, et al. Anti-β2 glycoprotein I antibodies in complex with β2 glycoprotein I induce platelet activation via two receptors: apolipoprotein E receptor 2′ and glycoprotein I bα. Front Med. 2016;10(1):76-84. doi:10.1007/s11684-015-0426-7.

(7) Bu C, Gao L, Xie W, et al. β2-glycoprotein I is a cofactor for tissue plasminogen activator-mediated plasminogen activation. Arthritis Rheum. 2009;60(2):559- 568. doi:10.1002/art.24262.

(8) Rand JH, Wu XX, Quinn AS, et al. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers: Evidence from atomic force microscopy and functional assay. Am J Pathol. 2003;163(3):1193-1200. doi:10.1016/S0002-9440(10)63479-7.

(9) De Laat B, Eckmann CM, Van Schagen M, Meijer AB, Mertens K, Van Mourik JA. Correlation between the potency of a beta2-glycoprotein I-dependent lupus anticoagulant and the level of resistance to activated protein C. Blood Coagul Fibrinolysis. 2008;19(8):757-764. doi:10.1097/MBC.0b013e32830f1b85.

(10) Pericleous C, Clarke LA, Brogan PA, et al. Endothelial microparticle release is stimulated in vitro by purified IgG from patients with the antiphospholipid syndrome. Thromb Haemost. 2013;109(1):72-78. doi:10.1160/TH12-05-0346.

(11) Vikerfors A, Mobarrez F, Bremme K, et al. Studies of microparticles in patients with the antiphospholipid syndrome (APS). In: Lupus. Vol 21. ; 2012:802-805. doi:10.1177/0961203312437809.

(12) Chaturvedi S, Cockrell E, Espinola R, et al. Circulating microparticles in patients with antiphospholipid antibodies: Characterization and associations. Thromb Res. 2015;135(1):102-108. doi:10.1016/j.thromres.2014.11.011.

(13) Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112(11):1644-1654. doi:10.1172/JCI18817.

(14) Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to β2-glycoprotein I iscomplement dependent and requires a priming factor. Blood. 2005;106(7):2340-2346. doi:10.1182/blood-2005-03-1319.

(15) Poulton K, Ripoll VM, Pericleous C, et al. Purified IgG from patients with obstetric but not IgG from nonobstetric antiphospholipid syndrome inhibit trophoblast invasion. Am J Reprod Immunol. 2015;73(5):390-401. doi:10.1111/aji.12341.

(16) Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. doi:10.1038/ncb1596.

(17) Stegmayr B, Ronquist G. Promotive effect on human sperm progressive motility by prostasomes. Urol Res. 1982;10(5):253-257. doi:10.1007/BF00255932.

(18) Thomas GM, Brill A, Mezouar S, et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost. 2015;13(7):1310-1319. doi:10.1111/jth.13002.

(19) Su Y, Deng X, Ma R, Dong Z, Wang F, Shi J. The Exposure of Phosphatidylserine Influences Procoagulant Activity in Retinal Vein Occlusion by Microparticles, Blood Cells, and Endothelium. Oxid Med Cell Longev. 2018;2018:3658476. doi:10.1155/2018/3658476.

(20) Ettelaie C, ElKeeb AM, Maraveyas A, Collier MEW. P38α phosphorylates serine 258 within the cytoplasmic domain of tissue factor and prevents its incorporation into cell-derived microparticles. Biochim Biophys Acta - Mol Cell Res. 2013;1833(3):613-621. doi:10.1016/j.bbamcr.2012.11.010.

(21) Betapudi V, Lominadze G, Hsi L, Willard B, Wu M, McCrae KR. Anti-β2GPI antibodies stimulate endothelial cell microparticle release via a nonmuscle myosin II motor protein-dependent pathway. Blood. 2013;122(23):3808- 3817. doi:10.1182/blood-2013-03-490318.

(22) Curtis AM, Wilkinson PF, Gui M, Gales TL, Hu E, Edelberg JM. p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles. J Thromb Haemost. 2009;7(4):701-709. doi:10.1111/j.1538-7836.2009.03304.x.

(23) Collier MEW, Ettelaie C. Regulation of the incorporation of tissue factor into microparticles by serine phosphorylation of the cytoplasmic domain of tissue factor. J Biol Chem. 2011;286(14):11977-11984. doi:10.1074/jbc.M110.195214.

Publicado
2021-04-29
Cómo citar
1.
Álvarez-Jaramillo D, Rúa C, Cadavid Ángela P. Vesículas extracelulares endoteliales inducidas por anticuerpos antifosfolípidos: vías implicadas en su producción y potencial procoagulante. Iatreia [Internet]. 29 de abril de 2021 [citado 27 de septiembre de 2021];34(1-S):S42-S44. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/345512