Antimicrobial Peptides as a New Alternative for Oral Cavity Infections. A Review of the Literature

Authors

  • Claudia Andrea Cruz-Baquero Universidad Colegio Mayor de Cundinamarca, Bogotá D.C., Colombia https://orcid.org/0000-0003-1041-9609
  • José David Rueda-Gutierrez Universidad Colegio Mayor de Cundinamarca, Bogotá D.C., Colombia
  • Laura Pérez-Abshana Hospital General de Medellín Luz Castro de Gutiérrez, Medellín, Colombia https://orcid.org/0000-0002-2047-7194

DOI:

https://doi.org/10.17533/udea.iatreia.353

Keywords:

Antimicrobial Peptides, Gingivitis, Periodontitis, Viral Drug Resistance

Abstract

Introduction: Microorganisms involved in oral cavity infections are a subject of the utmost importance, given that their eradication is complicated due to the increase of strains resistant to antibiotics commonly used to control these infections. However, the use of antibiotics is not uniform in all countries and, therefore, the resistance profile of microbial species is also diverse.

Objective: To identify alternatives in scientific literature for the treatment of oral cavity infections, highlighting on the novel use of synthetic antimicrobial peptides.

Methods: This review analyzed some general aspects of oral cavity infections, their causal microorganisms and the available treatments, highlighting synthetic antimicrobial peptides as a therapeutic alternative for oral cavity infections.

Results: Several alternatives for the treatment of oral cavity infections produced by anaerobic bacteria were evidenced, highlighting the studies performed with LL-37 c y 19-4LF peptides, among others.

Conclusions: Synthetic antimicrobial peptides are emerging as a complementary proposal for the treatment of oral cavity infections.

|Abstract
= 20 veces | PDF (ESPAÑOL (ESPAÑA))
= 13 veces|

Downloads

Download data is not yet available.

Author Biographies

Claudia Andrea Cruz-Baquero, Universidad Colegio Mayor de Cundinamarca, Bogotá D.C., Colombia

Researcher, REMA group, Universidad Colegio Mayor de Cundinamarca, Bogota D.C., Colombia.

José David Rueda-Gutierrez, Universidad Colegio Mayor de Cundinamarca, Bogotá D.C., Colombia

Student of the REMA research group, Universidad Colegio Mayor de Cundinamarca, Bogota D.C., Colombia.

Laura Pérez-Abshana, Hospital General de Medellín Luz Castro de Gutiérrez, Medellín, Colombia

Bacteriologist, Hospital General de Medellin Luz Castro de Gutierrez, Medellin, Colombia.

References

(1) Gondivkar S, Gadbail A, Sarode GS, Sarode SC, Patil S, Awan KH. Infectious diseases of oral cavity. Dis Mon [Internet]. 2019 Jun;65(6):164-184. https://doi.org/10.1016/j.disamonth.2018.09.008

(2) Mansour SC, Pena OM, Hancock RE. Host defense peptides: front-line immunomodulators. Trends Immunol [Internet]. 2014 Sep;35(9):443-450. https://doi.org/10.1016/j.it.2014.07.004

(3) Roque-Borda CA, Bento da Silva P, Rodrigues-Corrêa M, Di Filippo-Delello L, Duarte JL, Chorilli M, et al. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem [Internet]. 2022 Nov 5;241:114640. https://doi.org/10.1016/j.ejmech.2022.114640

(4) Sol A, Skvirsky Y, Nashef R, Zelentsova K, Burstyn-Cohen T, Blotnick E, et al. Actin enables the antimicrobial action of LL-37 peptide in the presence of microbial proteases. J Biol Chem [Internet]. 2014 Aug 15;289(33):22926-22941. https://doi.org/10.1074/jbc.m114.579672

(5) Malanovic N, Marx L, Blondelle SE, Pabst G, Semeraro EF. Experimental concepts for linking the biological activities of antimicrobial peptides to their molecular modes of action. Biochim Biophys Acta Biomembr [Internet]. 2020 Aug 1;1862(8):183275. https://doi.org/10.1016/j.bbamem.2020.183275

(6) Wuersching SN, Huth KC, Hickel R, Kollmuss M. Targeting antibiotic tolerance in anaerobic biofilms associated with oral diseases: Human antimicrobial peptides LL-37 and lactoferricin enhance the antibiotic efficacy of amoxicillin, clindamycin and metronidazole. Anaerobe [Internet]. 2021 oct;71:102439. https://doi.org/10.1016/j.anaerobe.2021.102439

(7) Wuersching SN, Huth KC, Hickel R, Kollmuss M. Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Anaerobe [Internet]. 2021 Feb;67:102301. https://doi.org/10.1016/j.anaerobe.2020.102301

(8) Tan P, Lai Z, Zhu Y, Shao C, Usman M, Li W, et al. Multiple Strategy Optimization of Specifically Targeted Antimicrobial Peptide Based on Structure-Activity Relationships to Enhance Bactericidal Efficiency. ACS Biomater Sci Eng [Internet]. 2020;6(1):398-414. https://doi.org/10.1021/acsbiomaterials.9b00937

(9) Bengtsson T, Zhang B, Selegård R, Wiman E, Aili D, Khalaf H. Dual action of bacteriocin PLNC8 $alphabeta$ through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation. Pathog Dis [Internet]. 2017 Jul 31;75(5):ftx064. https://doi.org/10.1093/femspd/ftx064

(10) Grover V, Chopra P, Mehta M. Synthetic short peptides (SSPs) as antibiofilm agents for dental material applications. Mater Today Proc [Internet]. 2022;50(5):665-672. https://doi.org/10.1016/j.matpr.2021.04.282

(11) Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch Oral Biol [Internet]. 2021 Feb; 122:105022. https://doi.org/10.1016/j.archoralbio.2020.105022

(12) Yadav MK, Yadav P, Dhiman M, Tewari S, Tiwari SK. Plantaricin LD1 purified from Lactobacillus plantarum LD1 inhibits biofilm formation of Enterococcus faecalis ATCC 29212 in tooth model. Lett Appl Microbiol [Internet]. 2022 Sep;75(3):623-631. https://doi.org/10.1111/lam.13668

(13) Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther [Internet]. 2022 feb;230:107970. https://doi.org/10.1016/j.pharmthera.2021.107970

(14) Phuong-Tran TT, Vu-Pham TA. Effect of advanced and injectable platelet-rich fibrins against Aggregatibacter actinomycetemcomitans in subjects with or without periodontal diseases. J Dent Sci [Internet]. 2023;18(2):491-496. https://doi.org/10.1016/j.jds.2022.09.014

(15) Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J Glob Antimicrob Resist [Internet]. 2020 Jun;21:445-451. https://doi.org/10.1016/j.jgar.2019.11.012

(16) Krachler AM, Orth K. Adhesins During Infection. In: Schmidt TM, editor. Encyclopedia of Microbiology. 4th Ed. Oxford: Academic Press; 2019. p. 28-37. http://dx.doi.org/10.1016/B978-0-12-801238-3.66118-4

(17) Esberg A, Sheng N, Mårell L, Claesson R, Persson K, Borén T, et al. Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine [Internet]. 2017;24:205-215. https://doi.org/10.1016/j.ebiom.2017.09.027

(18) Opazo A, Mella S, Domínguez M, Bello H, González G. Bombas de expulsión multidrogas en Acinetobacter baumannii y resistencia a antimicrobianos. Rev chil Infectol [Internet]. 2009;26(6):499-503. http://dx.doi.org/10.4067/S0716-10182009000700002

(19) Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis [Internet]. 2020;20(9):e216-e230. https://doi.org/10.1016/s1473-3099(20)30327-3

(20) Rodríguez-Carlos A, Jacobo-Delgado YM, Santos-Mena AO, Rivas-Santiago B. Modulation of cathelicidin and defensins by histone deacetylase inhibitors: A potential treatment for multi-drug resistant infectious diseases. Peptides [Internet]. 2021;140:170527. https://doi.org/10.1016/j.peptides.2021.170527

(21) Davidopoulou S, Diza E, Sakellari D, Menexes G, Kalfas S. Salivary concentration of free LL-37 in edentulism, chronic periodontitis and healthy periodontium. Arch Oral Biol [Internet]. 2013;58(8):930-934. https://doi.org/10.1016/j.archoralbio.2013.01.003

(22) Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci [Internet]. 2020;260:118407. https://doi.org/10.1016/j.lfs.2020.118407

(23) Patel S, Akhtar N. Antimicrobial peptides (PAMs): The quintessential 'offense and defense' molecules are more than antimicrobials. Biomed Pharmacother [Internet]. 2017;95:1276-1283. https://doi.org/10.1016/j.biopha.2017.09.042

(24) Michea MA, Briceño C, Alcota M, González FE. Péptidos antimicrobianos y mediadores lipídicos: rol en las enfermedades periodontales. Rev. Clin. Periodoncia Implantol. Rehabil. Oral [Internet]. 2016 dic;9(3):231-237. http://dx.doi.org/10.1016/j.piro.2016.03.003

(25) Yang Y, Qian Y, Zhang M, Hao S, Wang H, Fan Y, et al. Host defense peptide-mimicking $beta$-peptide polymer displaying strong antibacterial activity against cariogenic Streptococcus mutans. J Mater Sci Technol [Internet]. 2023;133:77-88. https://doi.org/10.1016/j.jmst.2022.05.053

(26) Teixeira-Costade Pontes J, Toledo-Borges AB, Roque-Borda CA, Pavan FR. Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics [Internet]. 2022;14(3):642. https://doi.org/10.3390/pharmaceutics14030642

(27) Bayirli BA, Öztürk A, Avci B. Serum vitamin D concentration is associated with antimicrobial peptide level in periodontal diseases. Arch Oral Biol [Internet]. 2020;117:104827. https://doi.org/10.1016/j.archoralbio.2020.104827

(28) Lim R, Barker G, Lappas M. Human cathelicidin antimicrobial protein 18 (hCAP18/LL-37) is increased in foetal membranes and myometrium after spontaneous labour and delivery. J Reprod Immunol [Internet]. 2015;107:31-42. https://doi.org/10.1016/j.jri.2014.10.002

(29) Jannadi H, Correa W, Zhang Z, Brandenburg K, Oueslati R, Rouabhia M. Antimicrobial peptides Pep19-2.5 and Pep19-4LF inhibit Streptococcus mutans growth and biofilm formation. Microb Pathog [Internet]. 2019;133:103546. https://doi.org/10.1016/j.micpath.2019.103546

(30) Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37 —A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta [Internet]. 2016;1858(3):546-566. https://doi.org/10.1016/j.bbamem.2015.11.003

(31) Nilsson BO. What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)? Peptides [Internet]. 2020;128:170311. https://doi.org/10.1016/j.peptides.2020.170311

(32) Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J, et al. Defensins: natural component of human innate immunity. Hum Immunol [Internet]. 2013;74(9):1069-1079. https://doi.org/10.1016/j.humimm.2013.05.008

(33) Weinberg A, Krisanaprakornkit S, Dale BA. Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med [Internet]. 1998;9(4):399-414. https://doi.org/10.1177/10454411980090040201

(34) Ebrahem MA. Expression of human beta defensins (HBDs) 1, 2 and 3 in gingival crevicular fluid of patients affected by localized aggressive periodontitis. Saudi Dent J [Internet]. 2013;25(2):75-82. https://doi.org/10.1016/j.sdentj.2013.02.004

(35) de Freitas-Lima SM, Martins-de Pádua G, da Costa-Sousa MG, de Souza-Freire M, Luiz-Franco O, Berto-Rezende TM. Antimicrobial peptide-based treatment for endodontic infections--biotechnological innovation in endodontics. Biotechnol Adv [Internet]. 2015;33(1):203-213. https://doi.org/10.1016/j.biotechadv.2014.10.013

(36) Tonguc-Altin K, Topcuoglu N, Duman G, Unsal M, Celik A, Selvi-Kuvvetli S, et al. Antibacterial effects of saliva substitutes containing lysozyme or lactoferrin against Streptococcus mutans. Arch Oral Biol [Internet]. 2021;129:105183. https://doi.org/10.1016/j.archoralbio.2021.105183

(37) Kim J, Kim S, Lim W, Choi H, Kim O. Effects of the antimicrobial peptide cathelicidin (LL-37) on immortalized gingival fibroblasts infected with Porphyromonas gingivalis and irradiated with 625-nm LED light. Lasers Med Sci [Internet]. 2015;30(8):2049-2057. https://doi.org/10.1007/s10103-014-1698-x

(38) Jiang SJ, Xiao X, Zheng J, Lai S, Yang L, Li J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis. J Appl Microbiol [Internet]. 2022;133(2):1052-1062. https://doi.org/10.1111/jam.15614

(39) Takei N, Takahashi N, Takayanagi T, Ikeda A, Hashimoto K, Takagi M, et al. Antimicrobial activity and mechanism of action of a novel cationic $alpha$-helical dodecapeptide, a partial sequence of cyanate lyase from rice. Peptides [Internet]. 2013;42:55-62. https://doi.org/10.1016/j.peptides.2012.12.015

(40) Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev [Internet]. 2021;175:113818. https://doi.org/10.1016/j.addr.2021.05.028

(41) Radaic A, Bispo-de Jesus M, Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. J Control Release [Internet]. 2020;321:100-118. https://doi.org/10.1016/j.jconrel.2020.02.001

(42) Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A, Indraguru R, et al. CPAMR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res [Internet]. 2023 jan 6;51(D1):D377-D383. https://doi.org/10.1093/nar/gkac933

(43) Raj PA, Rajkumar L, Dentino AR. Novel molecules for intra-oral delivery of antimicrobials to prevent and treat oral infectious diseases. Biochem J [Internet]. 2008;409(2):601-609. https://doi.org/10.1042/bj20070810

Published

2025-11-14

How to Cite

1.
Cruz-Baquero CA, Rueda-Gutierrez JD, Pérez-Abshana L. Antimicrobial Peptides as a New Alternative for Oral Cavity Infections. A Review of the Literature. Iatreia [Internet]. 2025 Nov. 14 [cited 2025 Dec. 5];1(1). Available from: https://revistas.udea.edu.co/index.php/iatreia/article/view/353072

Issue

Section

Review articles