Effects of the synthetic method on the particle size and purity of magnetite
DOI:
https://doi.org/10.17533/udea.redin.14927Palabras clave:
Magnetite synthesis, nanometric magnetite, magnetite characterizationResumen
The characterization of magnetites synthesized by methods reported with some modifications is presented. The influence on purity and particle size of the obtained oxides is discussed. The samples were characterized by Mössbauer Spectroscopy at room temperature, particle size analysis by light scattering and by transmission electron microscopy of naked particles. The results showed that depending on the method of synthesis there are variations on stoichiometry and composition of magnetites, being this difference more important when the rate of addition of the alkaline solution to the combined ferrous and dispersant solution is changed. Moreover, it has been found strong agglomeration evidenced by TEM, however the sizes of the individual crystallites are in the nanometer scale.
Descargas
Citas
R. Y. Hong, T. T. Pan, Y. P. Han, H. Z. Li, J. Ding, S. Hand. “Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids”. J. Magn. Mater. Vol. 310. 2007. pp. 37-47. DOI: https://doi.org/10.1016/j.jmmm.2006.07.026
M. A. Legodi, D. de Waal. “The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste”. Dyes and Pigments. Vol. 74. 2007. pp. 161-168. DOI: https://doi.org/10.1016/j.dyepig.2006.01.038
S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”. Science. Vol. 287. 2000. pp. 1989-1992. DOI: https://doi.org/10.1126/science.287.5460.1989
Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson. “Applications of magnetic nanoparticles in biomedicine”. J. Phys D: Appl. Phys. Vol. 36. 2003. pp. R167-181. DOI: https://doi.org/10.1088/0022-3727/36/13/201
N. Pernicone, F. Ferrero, I. Rossetti, L. Forni, P. Canton, P. Riello, G. Fagherazzi, M. Signoretto, F. Pinna. “Wustite as a new precursor of industrial ammonia synthesis catalysts”. Appl. Catal. A: Gen. Vol. 251. 2003. pp. 121-129. DOI: https://doi.org/10.1016/S0926-860X(03)00313-2
E. H. Kim, H. S. Lee, B. K. Kwak, B. K. Kim. “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent”. J. Magn. Mater. Vol. 289. 2005. pp. 328-330. DOI: https://doi.org/10.1016/j.jmmm.2004.11.093
D. Maity, D. C. Agrawal. “Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media”. J. Magn. Mater. Vol. 308. 2007. pp. 46-55. DOI: https://doi.org/10.1016/j.jmmm.2006.05.001
H. Zhang, R. Wang, G. Zhang, B. Yang. “A covalently attached film based on poly(methacrylic acid)-capped Fe3O4 nanoparticles”. Thin Solid Films. Vol. 429. 2003. pp. 167-173. DOI: https://doi.org/10.1016/S0040-6090(03)00059-2
Y. Yang, L. Li, G. Chen. “Synthesis of magnetic particles via a cationic–anionic urfactante vesicle method”. J. Magn. Mater. Vol. 305. 2006. pp. 40-46. DOI: https://doi.org/10.1016/j.jmmm.2005.11.028
Z. Huang, F. Tang, L. Zhang. “Morphology control and texture of Fe3O4 nanoparticle-coated polystyrene microspheres by ethylene glycol in forced hydrolysis reaction”. Thin Solid Films. Vol. 471. 2005. pp. 105-112. DOI: https://doi.org/10.1016/j.tsf.2004.04.042
Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning, X. P. Luo, D. Y. Tian, D. Xi. “Synthesis of magnetite nanoparticles in W/O microemulsion”. J. Mater. Sci. Vol. 39. 2004. pp. 2633-2636. DOI: https://doi.org/10.1023/B:JMSC.0000020046.68106.22
Y. Okano, T. Nakamura. Hydrothermal synthesis of aluminum bearing magnetite particles. Colloids and Surfaces. Vol. 139. 1998. pp. 279-285. DOI: https://doi.org/10.1016/S0927-7757(98)00367-7
U. Schwertmann, R. M. Cornell. Iron Oxides in the Laboratory. Preparation and Characterization. 2a ed. Ed. Wiley, Weinheim. 1991. pp. 75-111.
W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu. “The synthesis of octahedral nanoparticles of magnetite” Mat. Lett. Vol. 60. 2006. pp. 2998-3001. DOI: https://doi.org/10.1016/j.matlet.2006.02.032
Y.K. Gun’ko, S.C. Pillai, D. Mcinerney, “Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors”. J. Mater. Sci. Mater. Electron. Vol. 12. 2001. pp. 299-302. DOI: https://doi.org/10.1023/A:1011284009174
S. Franger, P. Berthet, J. Berthon. “Electrochemical synthesis of Fe 3O 4 nanoparticles in alkaline aqueous solutions containing complexing agents”. J. Solid State Electrochem. Vol. 8. 2004. pp. 218-223. DOI: https://doi.org/10.1007/s10008-003-0469-6
G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip , B. Raj. “Effect of initial pH and temperature of iron salt Solutions on formation of magnetite nanoparticles”. Mat. Chem. and Phys. Vol. 103. 2007. pp.168-175. DOI: https://doi.org/10.1016/j.matchemphys.2007.02.011
C. A. Barrero, A. L. Morales, J. Mazo-Zuluaga, F. Jaramillo, G. Pérez, D. M. Escobar, C. Arroyave, J. Tobón, P. M. Montoya, L. Ososrio, R. E Vandenberghe, J. M. Greneche. “Synthesis and Mössbauer characterization of Cu and Cr doped magnetites”. Rev. Metal. Madrid. Vol. Extr. 2003. pp. 62-67. DOI: https://doi.org/10.3989/revmetalm.2003.v39.iExtra.1098
J. Deng, Ch. L. He, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chang. “Magnetic and conductive Fe3O4– polyaniline nanoparticles with core–shell structure”. Synt. Met. Vol. 139. 2003. pp. 295-301. DOI: https://doi.org/10.1016/S0379-6779(03)00166-8
P. S. Shidu, R. J.Gilkes, A. M. Posner. “The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites”. J. inorg. nucl. chem. Vol. 40. 1978. pp. 429-435. DOI: https://doi.org/10.1016/0022-1902(78)80418-7
R. M. Cornell, U. Schwertmann. Iron oxide. Structure, Properties, Reactions, Ocurrence and Uses. 2a ed. Ed. Wiley, Weinheim. 2003. pp. 149. DOI: https://doi.org/10.1002/3527602097
D. K Kim, Y. Zhang, W. Voit, K. V.Rao, M. Muhammed. “Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles”. J. Magn. Mater. Vol. 225. 2001. pp. 30-36. DOI: https://doi.org/10.1016/S0304-8853(00)01224-5
R. W. Chantrell, A. Bradbury, J. Popplewell, W. Charles. “Agglomerate formation in a magnetic fluid”. J. of Appl. Phys. Vol. 53. 1982. pp. 2742-2744. DOI: https://doi.org/10.1063/1.330953
J. H. Wu, S. P. Ko, H. L.Liu, S. Kim, J. S. Ju, Y. K Kim. “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties”. Mat. Lett. Vol. 61. 2007. pp. 3124-3129. DOI: https://doi.org/10.1016/j.matlet.2006.11.032
L. Li, Y. Chu, Y. Liu, D. Wang. “Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts”. Journal of Alloys and Compounds. Vol. 472. 2009. pp. 271-275. DOI: https://doi.org/10.1016/j.jallcom.2008.04.041
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.