Implementación eficiente en hardware de un procesador COFDM completo con ecualización de canal robusta y reducción de consumo de potencia
DOI:
https://doi.org/10.17533/udea.redin.17040Palabras clave:
OFDM, FPGAs, radio frecuencia, receptores, codificación de canal, estimación de canalResumen
Este trabajo presenta el diseño de un procesador banda-base para multiplexación por división de frecuencias ortogonales codificada (COFDM) de 12 Mb/s para el estándar IEEE 802.11a. El procesador COFDM banda-base fue diseñado usando circuitos diseñados por nosotros para corrección de fase de portadora, sincronización de tiempo de símbolo, ecualización de canal robusta y decodificación Viterbi. Estos circuitos son flexibles, parametrizados y descritos usando VHDL estructural y genérico. El procesador COFDM banda-base tiene dos dominios de reloj para reducción del consumo de potencia, fue sintetizado sobre un FPGA Stratix II y fue probado experimentalmente usando circuitería de radio frecuencia (RF) a 2.4 GHz.
Descargas
Citas
H. Schulze, C. Lüders. Theory and Applications of OFDM and CDMA Wideband Wireless Communications. 1st ed. Ed. John Wiley & Sons. Chichester, England. 2005. pp. 93-263. DOI: https://doi.org/10.1002/0470017406
The Institute of Electrical and Electronics Engineers, Inc. IEEE Std. 802.1la-1999, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: High-speed Physical Layer in the 5 GHz Band. New York, USA. 1999. pp. 1-83.
European Telecommunications Standards Institute. ETSI EN 300 744 Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television. Sophia Antipolis, France. 2009. pp. 1-47.
The Institute of Electrical and Electronics Engineers, Inc. IEEE 802.22-2011, Wireless Regional Area Networks (WRAN) - Specific Requirements Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands. New York. USA. 2011. pp. 1-659.
European Telecommunications Standards Institute. LTE; ETSI TS 136 201 V9.1.0 (2010-04), Evolved Universal Terrestrial Radio Access (E-UTRA); Long Term Evolution (LTE) physical layer; General description (3GPP TS 36.201 vers. 9.1.0 Release 9). Sophia Antipolis, France. 2010. pp.1-15.
The Institute of Electrical and Electronics Engineers, Inc. IEEE 1901-2010, IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications. New York, USA. 2010. pp. 1-1586.
International Telecommunication Union. ITU-T G.992.1, Asymmetric digital subscriber line (ADSL) transceivers. Geneva, Switzerland. 1999. pp. 1-242.
Altera Corp. Implementing OFDM Using Altera Intellectual Property. San Jose, USA. 2001. pp. 1-8.
J. Yang, Y. Dong, G. Zhao, W. Zhang. The design of OFDM base-band data transmission system based on FPGA. 2nd International Conference on Artificial Intelligence. Management Science and Electronic Commerce (AIMSEC). Dengfeng, China. 2011. pp. 743-746. DOI: https://doi.org/10.1109/AIMSEC.2011.6010488
J. García, R. Cumplido. On the design of an FPGA-Based OFDM modulator for IEEE 802.11a. 2nd Int. Conf. on Electrical and Electronics Engineering. Mexico, Mexico. 2005. pp. 114-117.
J. Fernández, K. Borries, L. Cheng, B. Kumar, D. Stancil, F. Bai. “Performance of the 802.11p Physical Layer in Vehicle-to-Vehicle Environments”. IEEE Transactions on Vehicular Technology. Vol. 61. 2012. pp. 3-14. DOI: https://doi.org/10.1109/TVT.2011.2164428
M. Vestias, H. Sarmento. FPGA implementation of IEEE 802.15.3c receiver. 2012 IEEE 16th International Symposium on Consumer Electronics (ISCE). Harrisburg, USA. 2012. pp.1-2. DOI: https://doi.org/10.1109/ISCE.2012.6241728
G. Kiokes, G. Economakos, A. Amditis, N. Uzunoglu. Design and implementation of an OFDM system for vehicular communications with FPGA technologies. 6th Int. Conf. on Design & Technology of Integrated Systems in Nanoscale Era. Athens, Greece. 2011. pp. 1-6. DOI: https://doi.org/10.1109/DTIS.2011.5941446
C. Dick, F. Harris. FPGA Implementation of an OFDM PHY. Conference Record of the 37th Conference on Signals, Systems and Computers. Pacific Grove, USA. 2003. pp. 9-12.
F. Manavi, Y. Shayan. Implementation of OFDM modem for the Physical Layer of IEEE 802.11a Standard Based on Xilinx Virtex-I1 FPGA. Vehicular Technology Conference. Los Angeles, USA. 2004. pp. 1768-1772.
A. Troya, K. Maharatna, M. Krstic, E. Grass, U. Jagdhold, R. Kraemer. “Low-Power VLSI Implementation of the Inner Receiver for OFDM-Based WLAN Systems”. IEEE Transactions on Circuits and Systems I. Vol. 55. 2008. pp. 672-686. DOI: https://doi.org/10.1109/TCSI.2007.913732
A. Troya. Synchronization and Channel Estimation in OFDM: Algorithms for Efficient Implementation of WLAN Systems. PhD Thesis. Brandenburgische Technische Universität. Cottbus, Germany. 2004. pp. 1-225.
C. Wu. Research and Implementation on Timing and Frequency Synchronization for Wireless LANs. Master Thesis. Institute of Electronics Engineering National Yunlin University of Sciense and Technology. Douliu, China. 2005. pp. 1-95.
A. Viterbi. “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm”. IEEE Trans. on Inf. Theory. Vol.13. 1967. pp. 260-269. DOI: https://doi.org/10.1109/TIT.1967.1054010
J. Heller, I. Jacobs. “Viterbi Decoding for Satellite and Space Communication”. IEEE Transactions on Communication Technology. Vol. 19. 1971. pp. 835- 848. DOI: https://doi.org/10.1109/TCOM.1971.1090711
S. He, M. Torkelson. A New Approach to Pipeline FFT Processor. Proceedings of IPPS ‘96 the 10th International Parallel Processing Symposium. Honolulu, USA. 1996. pp. 766-770.
T. Schmidl, D. Cox. “Robust Frequency and Timing Synchronization for OFDM”. IEEE Transactions on Communications. Vol. 45. 1997. pp. 1613-1621. DOI: https://doi.org/10.1109/26.650240
R. Andraka. A survey of CORDIC algorithms for FPGA based computers. Proceedings of the ‘98 ACM/ SIGDA 6th int. symposium on FPGAs. Monterrey, USA. 1998. pp. 191-200. DOI: https://doi.org/10.1145/275107.275139
Altera Corp. Stratix II DSP Development Board Reference Manual. San Jose, USA. 2006. pp. 1-60.
Altera Corp. Quartus II Handbook Version 12.0. San Jose, USA. 2012. pp. 1547-1618.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.