Molecular dynamics simulations of nanoindentation in Cr, Ni, and Ni/Cr bilayer films using a hard spherical potential

  • Diego Fernando Arias-Mateus Universidad Católica de Pereira
  • Sebastian Amaya-Roncancio Universidad Nacional de Colombia https://orcid.org/0000-0001-5984-6252
  • Elisabeth Restrepo-Parra Universidad Nacional de Colombia
  • Mónica María Gómez-Hermida Universidad Católica de Pereira
  • Juan Carlos Riaño-Rojas Universidad Nacional de Colombia

Abstract

Molecular dynamics (MD) simulations of nanoindentation using the hard sphere potential were carried out for Cr, Ni and Ni/Cr bilayer thin films with interaction of BCC and FCC single-crystal and the contact between the Cr-Ni. On the other hand, fixed boundary conditions were used and the repulsive radial potential was employed for modeling the interaction between the tip and sample surface. Mechanical properties of the material at 300 K were obtained for Cr and Ni thin films and Ni/Cr bilayers. Hardness and elastic parameters were determined from the load-unload curves obtained by means of the simulations. These results show a better mechanical response in the case of bilayers compared to the Ni and Cr monolayers.
|Abstract
= 15 veces | PDF (ESPAÑOL (ESPAÑA))
= 12 veces|

Downloads

Download data is not yet available.

References

G. Radhakrishnan, R. Robertson, P. Adams, R. Cole. “Integrated TiC coatings for moving MEMS”. Thin Solid Films. Vol. 420. 2002. pp. 553-564.

W. Ashurst, C. Carraro, R. Maboudian, W. Frey. “Wafer level anti-stiction coatings for MEMS”. Sensors and Actuators A. Vol. 104. 2003. pp. 213-221.

T. Fang, W. Chang, C. Weng, “Nano-indentation and nanomachining characteristics of gold and platinum thin films”. Mater. Sci. Eng. A. Vol. 430. 2006. pp. 332- 340.

T. Iizuka, A. Onoda, T. Hoshide. “MD Simulation of Hardness Property of Al Thin Film Sputtered on Si Substrate and Its Related to Porosity”. JSME. Vol. 44. 2001. pp. 346-353.

Y. Shi, M. Falk. “Structural transformation and localization during simulated Nano-indentation of a non-crystalline metal film”. Appl. Phys. Lett. Vol. 86. 2005. pp. 011914 - 011914-3.

C. Liu, T. Fang, J. Lin. “Atomistic simulations of hard and soft films under Nano-indentation”. Mater. Sci. Eng. A. Vol. 452-453. 2007. pp. 135-141.

P. Peng, G. Liao, T Shi, Z.Tang, Y. Gao. “Molecular dynamic simulations of Nano-indentation in aluminum thin film on silicon substrate”. Appl. Surf. Sci. Vol. 256. 2010. pp. 6284-6290.

T. Fang, W. Hung. “Molecular dynamics simulations on Nano-indentation mechanisms of multilayered films”. Comput. Mater. Sci. Vol. 43. 2008. pp. 785-790.

Y. Hu, S. Sinnott. “Constant temperature molecular dynamics simulations of energetic particle–solid collisions: comparison of temperature control methods.” Journal of Computational Physics. Vol. 200. 2004. pp. 251-266.

C. Goringe, D. Bowler, E. Hernandes. “Tight-binding modelling of materials”. Rep. Prog. Phys.Vol. 60. 1997. pp. 1447.

D. Christopher. Molecular Dynamics Modelling of Nano-indentation. Doctoral Thesis. Loughborough University. Loughborough, UK. 2002.

G. Ziegenhain, A. Hartmaier, H. Urbassek. “Pair vs many-body potentials: Influence on elastic and plastic behavior in Nano-indentation of fcc metals Gerolf Ziegenhain”. J. Mech. Phys. Solids. Vol. 57. 2009. pp. 1514-1526.

D. Frenkel, B. Smit. Understanding Molecular Simulation From Algorithms to Applications. 2nd ed. Ed. Academic Press. San Diego, USA. 2002. pp. 82- 84.

R. Komanduria, N. Chandrasekarana, L. Ra. “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at Nano-level.” Inter. J. Mech. Sci. Vol. 43. 2001. pp. 2237-2260.

A. Bolshakov, G. Pharr. “Influences of pile up on the measurement of mechanical properties by load and depth sensing indentation techniques.” J. Mater. Res. Vol. 13. 1998. pp. 1049-1058.

R. Mirshams, R. Pothapragada. “Correlation of Nano-indentation measurements of nickel made using geometrically different indenter tips.” Acta Materialia. Vol. 54. 2006. pp. 1123-1134.

H. Baránková, L. Bárdos. “Comparison of pulsed dc and rf hollow cathode depositions of Cr and CrN films”. Surf. Coat. Technol. Vol. 205. 2011. pp. 4169- 4176.

C. Wang, S. Jian, J. Jan, Y. Lai, P. Yang. “Multiscale simulation of Nano-indentation on Ni (1 0 0) thin film”. Appl. Surf. Sci. Vol. 255. 2010. pp. 3240-3250.

T. Fang, C. Weng, J. Chang. “Molecular dynamics analysis of temperature effects on Nano-indentation measurement.” Mater. Sci. Eng. Vol. 357. 2003. pp. 7-12.

S. Medyanik, S. Shao. “Strengthening effects of coherent interfaces in nanoscale metallic bilayers.” Comp. Mater. Sci. Vol. 45. 2009. pp. 1129-1133.

R. Hoagland , R. Kurtz, C. Henager Jr. “Slip resistance of interfaces and the strength of metallic multilayer composites.” Scripta Mater. Vol. 50. 2004. pp. 775- 779.

Y. Cao, J. Zhang, Y. Liang, F. Yu, T. Sun. “Mechanical and tri-biological properties of Ni/Al multilayers—A molecular dynamics study.” Appl. Surf. Sci. Vol. 257. 2010. pp. 847-851.

Published
2013-10-21
How to Cite
Arias-Mateus D. F., Amaya-Roncancio S., Restrepo-Parra E., Gómez-Hermida M. M., & Riaño-Rojas J. C. (2013). Molecular dynamics simulations of nanoindentation in Cr, Ni, and Ni/Cr bilayer films using a hard spherical potential. Revista Facultad De Ingeniería Universidad De Antioquia, (68), 88-94. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/17163