Molecular dynamics simulations of nanoindentation in Cr, Ni, and Ni/Cr bilayer films using a hard spherical potential
DOI:
https://doi.org/10.17533/udea.redin.17163Keywords:
nanoindentatio, Cr film, Ni film, bilayer, molecular dynamicsAbstract
Molecular dynamics (MD) simulations of nanoindentation using the hard sphere potential were carried out for Cr, Ni and Ni/Cr bilayer thin films with interaction of BCC and FCC single-crystal and the contact between the Cr-Ni. On the other hand, fixed boundary conditions were used and the repulsive radial potential was employed for modeling the interaction between the tip and sample surface. Mechanical properties of the material at 300 K were obtained for Cr and Ni thin films and Ni/Cr bilayers. Hardness and elastic parameters were determined from the load-unload curves obtained by means of the simulations. These results show a better mechanical response in the case of bilayers compared to the Ni and Cr monolayers.
Downloads
References
G. Radhakrishnan, R. Robertson, P. Adams, R. Cole. “Integrated TiC coatings for moving MEMS”. Thin Solid Films. Vol. 420. 2002. pp. 553-564. DOI: https://doi.org/10.1016/S0040-6090(02)00844-1
W. Ashurst, C. Carraro, R. Maboudian, W. Frey. “Wafer level anti-stiction coatings for MEMS”. Sensors and Actuators A. Vol. 104. 2003. pp. 213-221. DOI: https://doi.org/10.1016/S0924-4247(03)00023-2
T. Fang, W. Chang, C. Weng, “Nano-indentation and nanomachining characteristics of gold and platinum thin films”. Mater. Sci. Eng. A. Vol. 430. 2006. pp. 332- 340. DOI: https://doi.org/10.1016/j.msea.2006.05.106
T. Iizuka, A. Onoda, T. Hoshide. “MD Simulation of Hardness Property of Al Thin Film Sputtered on Si Substrate and Its Related to Porosity”. JSME. Vol. 44. 2001. pp. 346-353. DOI: https://doi.org/10.1299/jsmea.44.346
Y. Shi, M. Falk. “Structural transformation and localization during simulated Nano-indentation of a non-crystalline metal film”. Appl. Phys. Lett. Vol. 86. 2005. pp. 011914 - 011914-3. DOI: https://doi.org/10.1063/1.1844593
C. Liu, T. Fang, J. Lin. “Atomistic simulations of hard and soft films under Nano-indentation”. Mater. Sci. Eng. A. Vol. 452-453. 2007. pp. 135-141. DOI: https://doi.org/10.1016/j.msea.2006.10.093
P. Peng, G. Liao, T Shi, Z.Tang, Y. Gao. “Molecular dynamic simulations of Nano-indentation in aluminum thin film on silicon substrate”. Appl. Surf. Sci. Vol. 256. 2010. pp. 6284-6290. DOI: https://doi.org/10.1016/j.apsusc.2010.04.005
T. Fang, W. Hung. “Molecular dynamics simulations on Nano-indentation mechanisms of multilayered films”. Comput. Mater. Sci. Vol. 43. 2008. pp. 785-790. DOI: https://doi.org/10.1016/j.commatsci.2008.01.066
Y. Hu, S. Sinnott. “Constant temperature molecular dynamics simulations of energetic particle–solid collisions: comparison of temperature control methods.” Journal of Computational Physics. Vol. 200. 2004. pp. 251-266. DOI: https://doi.org/10.1016/j.jcp.2004.03.019
C. Goringe, D. Bowler, E. Hernandes. “Tight-binding modelling of materials”. Rep. Prog. Phys.Vol. 60. 1997. pp. 1447. DOI: https://doi.org/10.1088/0034-4885/60/12/001
D. Christopher. Molecular Dynamics Modelling of Nano-indentation. Doctoral Thesis. Loughborough University. Loughborough, UK. 2002.
G. Ziegenhain, A. Hartmaier, H. Urbassek. “Pair vs many-body potentials: Influence on elastic and plastic behavior in Nano-indentation of fcc metals Gerolf Ziegenhain”. J. Mech. Phys. Solids. Vol. 57. 2009. pp. 1514-1526. DOI: https://doi.org/10.1016/j.jmps.2009.05.011
D. Frenkel, B. Smit. Understanding Molecular Simulation From Algorithms to Applications. 2nd ed. Ed. Academic Press. San Diego, USA. 2002. pp. 82- 84.
R. Komanduria, N. Chandrasekarana, L. Ra. “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at Nano-level.” Inter. J. Mech. Sci. Vol. 43. 2001. pp. 2237-2260. DOI: https://doi.org/10.1016/S0020-7403(01)00043-1
A. Bolshakov, G. Pharr. “Influences of pile up on the measurement of mechanical properties by load and depth sensing indentation techniques.” J. Mater. Res. Vol. 13. 1998. pp. 1049-1058. DOI: https://doi.org/10.1557/JMR.1998.0146
R. Mirshams, R. Pothapragada. “Correlation of Nano-indentation measurements of nickel made using geometrically different indenter tips.” Acta Materialia. Vol. 54. 2006. pp. 1123-1134. DOI: https://doi.org/10.1016/j.actamat.2005.10.048
H. Baránková, L. Bárdos. “Comparison of pulsed dc and rf hollow cathode depositions of Cr and CrN films”. Surf. Coat. Technol. Vol. 205. 2011. pp. 4169- 4176. DOI: https://doi.org/10.1016/j.surfcoat.2011.03.013
C. Wang, S. Jian, J. Jan, Y. Lai, P. Yang. “Multiscale simulation of Nano-indentation on Ni (1 0 0) thin film”. Appl. Surf. Sci. Vol. 255. 2010. pp. 3240-3250. DOI: https://doi.org/10.1016/j.apsusc.2008.09.034
T. Fang, C. Weng, J. Chang. “Molecular dynamics analysis of temperature effects on Nano-indentation measurement.” Mater. Sci. Eng. Vol. 357. 2003. pp. 7-12. DOI: https://doi.org/10.1016/S0921-5093(03)00219-3
S. Medyanik, S. Shao. “Strengthening effects of coherent interfaces in nanoscale metallic bilayers.” Comp. Mater. Sci. Vol. 45. 2009. pp. 1129-1133. DOI: https://doi.org/10.1016/j.commatsci.2009.01.013
R. Hoagland , R. Kurtz, C. Henager Jr. “Slip resistance of interfaces and the strength of metallic multilayer composites.” Scripta Mater. Vol. 50. 2004. pp. 775- 779. DOI: https://doi.org/10.1016/j.scriptamat.2003.11.059
Y. Cao, J. Zhang, Y. Liang, F. Yu, T. Sun. “Mechanical and tri-biological properties of Ni/Al multilayers—A molecular dynamics study.” Appl. Surf. Sci. Vol. 257. 2010. pp. 847-851. DOI: https://doi.org/10.1016/j.apsusc.2010.07.079
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.