Dynamics Study of Processes Fracture and Fiber-Reinforced Materials Delamination

Authors

  • Pedro Tamayo-Meza Instituto Politécnico Nacional
  • Anatoly S. Ovchinsky Academia de Ciencias de Rusia
  • Juan Manuel Sandoval-Pineda Instituto Politécnico Nacional
  • Luis Armando Flores-Herrera Instituto Politécnico Nacional
  • Rosa de Guadalupe González-Huerta Instituto Politécnico Nacional

Keywords:

Fracture, interface, delamination, fiber, matrix

Abstract


With the construction of a plane model, a qualitative study was made in order to observe the transactions that are developed during the fracture process and its  simulation  on  different  sections  of  a  composite,  from  the  accumulation  of  the  damage  stage  to  the  moment  when  the  crack  propagates  abruptly  causing a macro fracture. An algorithm was developed to observe the stress redistribution processes and the compound is simulated including packaging defects  of  the  filaments.  During  the  study  of  the  fracture  processes  in reinforced composites there are many factors to consider that are interrelated and that have a casual character. The mechanical properties of the fibers and the matrix, the matrix-fiber adherence and the resistance of the interface, all vary with the application of the load. The use of computational methods opens great possibilities for the development of the simulation and the models of the fracture processes.

|Abstract
= 14 veces | PDF (ESPAÑOL (ESPAÑA))
= 11 veces|

Downloads

Download data is not yet available.

Author Biographies

Pedro Tamayo-Meza, Instituto Politécnico Nacional

 Escuela Superior de Ingeniería Mecánica y Eléctrica, Departamento de Ingeniería Eléctrica

Anatoly S. Ovchinsky, Academia de Ciencias de Rusia

Instituto de Metalurgia

Juan Manuel Sandoval-Pineda, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica

Luis Armando Flores-Herrera, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica

Rosa de Guadalupe González-Huerta, Instituto Politécnico Nacional

Escuela Superior de Ingeniería Mecánica y Eléctrica

References

I. Kopyov, A. Ovchinsky, N. Bilsagayev. “Computer Simulation of Various Fracture Mechanisms in Fibrous Composite Materials”. Fracture of Composite Materials. 1st ed. Ed. Martinus Nijhoff Publishers. A. A. Baikov Metallurgy Institute, Academy of Science Moscow. Moscow, Russia. 1982. pp. 45-52.

A. Ovchinsky, I. Kopyov, N. Bilsagayev. “El método de trazar la deformación de los materiales compuestos de acuerdo con la distribución estadística de la fuerza en las fibras de refuerzo”. Mecánica de polímeros (Механика полимеров). No. 6. Ed. Polimēru mehānikas institūts, Latvijas Universitāte. Riga, Letonia. 1975. pp. 1021-1031.

E. Hait. “Fracture dynamic in reinforced composites”. Conferences. No. 3. Ed. Russian Academy of Science. Moscow, Russia. 1975. pp. 572-774.

M. Stepanenko. “Numerical experiment on the dynamics of destruction of composite material”. Mexanika Kompozitnij materialov. No. 1. 1981. pp. 53-59.

C. Guo, C. Sun. “Dynamic Mode-I crack-propagation in a carbon/epoxy composite”. Composites Science and Technology. Vol. 58. 1998. pp. 1405–1410.

L. Greszczuk. “Theoretical studies of the mechanics of the fiber-matrix interface in composites”. Interfaces in composites. Ed. American Society for Testing and Materials. New York, USA. 1969. pp. 42-58.

J. Ivens, H. Albertsen, M. Wevers, I. Verpoest, P. Peters. “Interlaminar fracture toughness of CFRP influenced by fiber surface treatment: Part 2. Modelling of the interface effect”. Composites Science and Technology. Vol. 54. 1995. pp. 147-159.

L. Wu, D. Tjahjanto, G. Becker, A. Makradi, A. Jérusalem, L. Noels. “A micro-meso-model of intralaminar fracture in fiber.reinforced composites based on a discontinuos Galerkin / cohesive zone method”. Eng. Fract. Mech. Vol. 104. 2013. pp. 162-183.

H. Albertsen, J. Ivens, M. Wevers, I. Verpoest, P. Peters. “Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results”. Comp. Sci. Tech. Vol. 54. 1995. pp. 133-47.

L. Broutman. “Measurement of the fiber polymer matrix interfacial strength”. Interfaces in composites. Ed. American Society for Testing and Materials, 1st, ed. New York, USA. 1969. pp. 27-41.

P. Yang, H. Sue. “Effects of fiber forms on compressive strength after impact of composites”. Polym. Mater. Sci. Vol.70. 1993. pp. 61-63.

H. Chai. “Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fracture”. Int. J. Fract. Vol. 60. 1993. pp. 311-326.

E. Pietropaoli, “Progressive Failure Analysis of Composite Structures Using a Constitutive Material Model (USERMAT) Developed and Implemented in ANSYS ©”. Appl. Compos. Mater. Vol. 19. 2012. pp. 657-668.

F. Greco, L. Leonetti, P. Lonetti. “A two-scale failure analysis of composite materials in presence of fiber/ matrix crack initiation and propagation”. Composite Structures. Vol. 95. 2013. pp. 582–597.

L. Lammerant, I. Verpoest. “Modelling of the interaction between matrix cracks and delaminations during impact of composite plates”. Composites Science and Technology. Vol. 56. 1996. pp. 1171–1178.

M. Tamayo. Evaluation of the Adherence Force of Aluminum Fibers in Composites Obtained by Plasma Deposition. IPCM-89, Proceeding, University of Sheffield. Sheffield, UK. 1989. pp. 5-7.

T. Cheng, R. Qiao, Y. Xia. “A Monte Carlo simulation of damage and failure process with crack saturation for unidirectional fiber reinforced ceramic composites”. Composites Science and Technology. Vol. 64. 2004. pp. 2251-2260.

Z. Mikulika, D. Kellya, B. Prustya, R. Thomsonb. “Prediction of flange debonding in composite stiffened panels using an analytical crack tip element-based methodology”. Composite Structures. Vol. 85. 2008. pp. 233-244.

A. Ayyara, N. Chawlab. “Microstructure-based modeling of crack growth in particle reinforced composites”. Composites Science and Technology. Vol. 66. 2006. pp. 1980-1994.

S. Soni, R. Kim. “Delamination of composite laminates stimulated by interlaminar shear”. J. Whitmey (editor). Composite Materials: Testing and Design. Ed. American Society for Testing and Materials. New York, USA. 1986. pp. 7-33.

S. Pemberton, E. Oberg, J. Dean, D. Tsarouchas, A. Markaki, L. Marston, T. Clyne. “The fracture energy of metal fibre reinforced ceramic composites (MFCs)”. Composites Science and Technology. Vol. 71. 2011. pp. 266-275.

Y. Zhang, C. Yang, “Recent developments in finite element analysis for laminated composite plates.” Journal of Composite Structures. Vol. 88. 2009. pp. 147-157.

Y. Taoling, L. Yunbo, J. Wang. “A study of the propagation of an embedded crack in a composite laminate of finite thickness”. Composite Structures. Vol. 59. 2003. pp. 473-479.

J. Tan, J. Elliot, T. Clyne. “Analysis of tomography images of bonded fiber networks to measure distributions of fiber segment length and fiber orientation”. Advanced Engineering Materials. Vol. 8. 2006. pp. 495-500.

Published

2014-02-27

How to Cite

Tamayo-Meza, P., Ovchinsky, A. S., Sandoval-Pineda, J. M., Flores-Herrera, L. A., & González-Huerta, R. de G. (2014). Dynamics Study of Processes Fracture and Fiber-Reinforced Materials Delamination. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 119–131. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/18654

Most read articles by the same author(s)