A comparative study between Piecewise-Linear and Point-Based methodologies for galvanometer mirror systems

  • Victor Manuel Jiménez-Fernández Facultad de Instrumentación Electrónica, Universidad Veracruzana
  • Héctor Hugo Cerecedo-Núñez Universidad Veracruzana https://orcid.org/0000-0001-8132-7272
  • Patricia Padilla-Sosa Universidad Veracruzana
  • Luis Beltrán-Parrazal Universidad Veracruzana
  • Hector Vazquez-Leal Universidad Veracruzana
  • Uriel Antonio Filobello-Niño Universidad Veracruzana
Keywords: Comparative study, piecewise-Linear, point-based, galvanometer mirrors


Galvanometer mirror systems are a fundamental tool used in many research fields to deploy curves over virtually any surface. Even though the point-based methodology is the current standard used to achieve this task, it has the shortcoming of using a format of coordinates (expressed as a massive list of points) to represent the curve to be displayed, requiring large memory arrays. An alternative methodology is the so-called Piecewise-Linear which representation format is based on the use of a mathematical Piecewise-Linear formulation where the curves to be drawn are treated as a parametric system composed of two positional equations,  X and  Y, related to each other by an artificial parameter \mu. In comparison against the point-based method, Piecewise-Linear exhibits attractive advantages such as: memory saving and improved sharpness for projected curves.

= 22 veces | PDF (ESPAÑOL (ESPAÑA))
= 9 veces|


Download data is not yet available.

Author Biographies

Victor Manuel Jiménez-Fernández, Facultad de Instrumentación Electrónica, Universidad Veracruzana

Profesor asistente, Facultad de Instrumentación Electrónica.

Héctor Hugo Cerecedo-Núñez, Universidad Veracruzana

Facultad de Física

Patricia Padilla-Sosa, Universidad Veracruzana

Profesora asociada, Facultad de Física

Luis Beltrán-Parrazal, Universidad Veracruzana

Profesor asociado, Centro de Investigaciones Cerebrales

Hector Vazquez-Leal, Universidad Veracruzana
Hector Vazquez-Leal received the B.Sc. degree in Electronic Instrumentation Engineering in 1999 from Universidad Veracruzana (UV),  M.Sc.  and Ph.D. degrees in Electronic Sciences in 2001/2005 from National Institute of Astrophysics, Optics and Electronics (INAOE), México. His current research mainly covers analytical-numerical solutions, and symbolic analysis of nonlinear problems arising in microelectronics and applied sciences, robotics, automate circuit design, MEMs, and wireless energy transfer. He is editor of two International peer-reviewed Journals and regular invited reviewer of more than 25 journals. Prof. Vazquez-Leal is author/coauthor of 71 research articles published in several prestigious journals.
Uriel Antonio Filobello-Niño, Universidad Veracruzana

Profesor asistente, Facultad de Instrumentación Electrónica.


L. Meyer, N. Otberg, W. Sterry, J. Lademann. “In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin”. Journal of Biomedical Optics. Vol. 11. 2006. pp. 1-7.

B. Vohnsen, D. Rativa. “Ultrasmall spot size scanning laser ophthalmoscopy”. Biomedical Optics Express. Vol. 2. 2011. pp. 1597-1609.

M. Sridhar, S. Basu, V. Scranton, P. Campagnola. “Construction of a laser scanning microscope for multiphoton excited optical fabrication”. Rev. Sci. Instrum. Vol. 74. 2003. pp. 3474–3477.

M. Chen, Y. Chen, W. Hsiao, S. Wu, C. Hu, Z. Gu. “A scribing laser marking system using DSP controller”. Optics and Lasers in Engineering. Vol. 46. pp. 410- 418.

F. Blais. “Review of 20 Years of Range Sensor Development”. Journal of Electronic Imaging. Vol. 13. 2004. pp. 231-243.

RP Photonics. Encyclopedia of Laser Physics and Technology. Available on: http://www.rp-photonics.com/laser_applications.html?s=ak Accessed: July 27, 2014.

THORLABS. Thorlabs Small Beam Diameter Scanning Galvo Mirror Systems. Available on: http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3770 Accessed: July 27, 2014.

Edmund Optics. Dual Axis Galvanometer Optical Scanners. Available on: http://www.edmundoptics.com/electro-optics/electro-optics-accessories/dualaxis-galvanometer-optical-scanners/2717 Accessed: July 27, 2014.

F. Menendez, O. Halabi, N. Chiba. Vector-based library for displaying Bezier curves using a laser projector. Proceedings of the IWAIT 07. Bangkok, Thailand. 2007. pp. 121-126.

P. Abderyim, F. Menendez, O. Halabi, N. Chiba. Morphing-based vectorized candle animation for laser graphics. Proceedings of the IWAIT 07. Bangkok, Thailand. 2007. pp.127-132.

Technoroam. Laser Scanner: Experiment 28. http://www.technoroam.sk/lasershow/downloads/ENP28.pdf Accessed: July 27, 2014.

Lasershow Laser Systems. TraceIT: free bitmap tracer for LD2000 and FB3. Available on: http://www.pangolin.com/LA_Studio/TraceIT.htm#TraceIT%20and%20Pangolin%20Lasershow%20Designer%20 2000 Accessed: July 27, 2014.

SOLLINGER. Basic Laser Projectors. Available on: http://www.laseranimation.com/en/products/lasersystems Accessed: July 27, 2014.

PHOENIX. Phoenix4 PRO/PROplus. Available on: http://www.phoenix-showcontroller.de/en/phoenix/pro-en/ Accessed: July 27, 2014.

Medialas. Mamba Elements. Available on: http://www.medialas-showlaser.de/mamba_elements.html?&L=1 Accessed: July 27, 2014.

GSI. Laser Products: Beam Delivery Technologies. Available on: http://www.gsig.com/Laser-Products Accessed: July 27, 2014.

LOBO. Projectors. Available on: http://www.lobo.de/index.php?id=lasershow_products&L=1&maincat_uid=14&subcat_uid=0 Accessed: July 27, 2014.

O. Halabi, N. Chiba. “Effcient vector-oriented graphic drawing method for laser-scanned display”. Elsevier Displays. Vol. 30. 2009. pp. 97-106.

V. Jimenez, H. Cerecedo, H. Vazquez, L. Beltran, U. Filobello. “A parametric piecewise-linear approach to laser projection”. Computational and Applied Mathematics. DOI:10.1007/s40314-013-0099-2. 2013. pp. 1-21.

L. Chua, A. Deng. “Canonical piecewise-linear modeling”. IEEE Transactions on Circuits and Systems. Vol. 33. 1986. pp. 511-525.

L. Chua, A. Deng. “Canonical piecewise-linear representation”. IEEE Transactions on Circuits and Systems. Vol. 35. 1988. pp. 101-111.

S. Kang, L. Chua. “A global representation of multidimensional piecewise-linear functions with linear partitions”. IEEE Transactions on Circuits and Systems. Vol. 25. 1978. pp. 938-940.

S. Kang, L. Chua. “Section-wise piecewise-linear functions: Canonical representation, properties and applications”. IEEE. Vol. 65. 1977. pp. 915-929.

V. Jimenez, L. Hernandez, A. Sarmiento. Decomposed Piecewise-Linear Models by Hyperplanes Unbending. Proceedings of the IEEE International Symposium on Circuits and Systems. Island of Kos, Greece, 2006. pp. 2353-2356.

V. Jimenez. Decomposed Piecewise-Linear Representation Applied to DC Analysis. PhD Thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica. Puebla, México. 2006. pp. 47-68.

V. Jimenez, E. Muñoz, H. Vazquez, J. Chavez, L. Hernandez, L. Sarmiento, M. Cerdan. “A PiecewiseLinear Fitting Technique for Multivalued Twodimensional Paths”. Journal of Applied Research and Technology. Vol. 11. 2013. pp. 636-640.

LASERPHOTO. LP20 Galvanometer Based Optical Scanner. Available on: http://www.laserphoto.org/en/pic/digi/20085510211232.pdf Accessed: July 27, 2014.

SpectraScan. Samples-Software Downloads Avilable on: http://www.lasershs.com/Sample_Download.htm Accessed: July 27, 2014.

How to Cite
Jiménez-Fernández V. M., Cerecedo-Núñez H. H., Padilla-Sosa P., Beltrán-Parrazal L., Vazquez-Leal H., & Filobello-Niño U. A. (2014). A comparative study between Piecewise-Linear and Point-Based methodologies for galvanometer mirror systems . Revista Facultad De Ingeniería Universidad De Antioquia, (73), 124-133. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/18977