A comparative study between Piecewise-Linear and Point-Based methodologies for galvanometer mirror systems

Authors

  • Victor Manuel Jiménez-Fernández Veracruz University
  • Héctor H. Cerecedo-Núñez Veracruz University https://orcid.org/0000-0001-8132-7272
  • Patricia Padilla-Sosa Veracruz University
  • Luis Beltrán-Parrazal Veracruz University
  • Hector Vazquez-Leal Veracruz University
  • Uriel Filobello-Niño Veracruz University

DOI:

https://doi.org/10.17533/udea.redin.18977

Keywords:

piecewise-Linear, point-based, galvanometer mirrors, comparative study

Abstract

Galvanometer mirror systems are a fundamental tool used in many research fields to deploy curves over virtually any surface. Even though the point-based methodology is the current standard used to achieve this task, it has the shortcoming of using a format of coordinates (expressed as a massive list of points) to represent the curve to be displayed, requiring large memory arrays. An alternative methodology is the so-called Piecewise-Linear which representation format is based on the use of a mathematical Piecewise-Linear formulation where the curves to be drawn are treated as a parametric system composed of two positional equations,  X and  Y, related to each other by an artificial parameter \mu. In comparison against the point-based method, Piecewise-Linear exhibits attractive advantages such as: memory saving and improved sharpness for projected curves.

|Abstract
= 313 veces | PDF (ESPAÑOL (ESPAÑA))
= 119 veces|

Downloads

Download data is not yet available.

Author Biographies

Victor Manuel Jiménez-Fernández, Veracruz University

Assistant Professor, Faculty of Electronic Instrumentation.

Héctor H. Cerecedo-Núñez, Veracruz University

Physical Faculty.

Patricia Padilla-Sosa, Veracruz University

Associate Professor, Faculty of Physics.

Luis Beltrán-Parrazal, Veracruz University

Associate Professor, Brain Research Center.

Hector Vazquez-Leal, Veracruz University

Faculty of Electronic Instrumentation.

Uriel Filobello-Niño, Veracruz University

Assistant Professor, Faculty of Electronic Instrumentation.

References

L. Meyer, N. Otberg, W. Sterry, J. Lademann. “In vivo confocal scanning laser microscopy: comparison of the reflectance and fluorescence mode by imaging human skin”. Journal of Biomedical Optics. Vol. 11. 2006. pp. 1-7. DOI: https://doi.org/10.1117/1.2337294

B. Vohnsen, D. Rativa. “Ultrasmall spot size scanning laser ophthalmoscopy”. Biomedical Optics Express. Vol. 2. 2011. pp. 1597-1609. DOI: https://doi.org/10.1364/BOE.2.001597

M. Sridhar, S. Basu, V. Scranton, P. Campagnola. “Construction of a laser scanning microscope for multiphoton excited optical fabrication”. Rev. Sci. Instrum. Vol. 74. 2003. pp. 3474–3477. DOI: https://doi.org/10.1063/1.1584079

M. Chen, Y. Chen, W. Hsiao, S. Wu, C. Hu, Z. Gu. “A scribing laser marking system using DSP controller”. Optics and Lasers in Engineering. Vol. 46. pp. 410- 418. DOI: https://doi.org/10.1016/j.optlaseng.2007.11.010

F. Blais. “Review of 20 Years of Range Sensor Development”. Journal of Electronic Imaging. Vol. 13. 2004. pp. 231-243. DOI: https://doi.org/10.1117/1.1631921

RP Photonics. Encyclopedia of Laser Physics and Technology. Available on: http://www.rp-photonics.com/laser_applications.html?s=ak Accessed: July 27, 2014.

THORLABS. Thorlabs Small Beam Diameter Scanning Galvo Mirror Systems. Available on: http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3770 Accessed: July 27, 2014.

Edmund Optics. Dual Axis Galvanometer Optical Scanners. Available on: http://www.edmundoptics.com/electro-optics/electro-optics-accessories/dualaxis-galvanometer-optical-scanners/2717 Accessed: July 27, 2014.

F. Menendez, O. Halabi, N. Chiba. Vector-based library for displaying Bezier curves using a laser projector. Proceedings of the IWAIT 07. Bangkok, Thailand. 2007. pp. 121-126.

P. Abderyim, F. Menendez, O. Halabi, N. Chiba. Morphing-based vectorized candle animation for laser graphics. Proceedings of the IWAIT 07. Bangkok, Thailand. 2007. pp.127-132.

Technoroam. Laser Scanner: Experiment 28. http://www.technoroam.sk/lasershow/downloads/ENP28.pdf Accessed: July 27, 2014.

Lasershow Laser Systems. TraceIT: free bitmap tracer for LD2000 and FB3. Available on: http://www.pangolin.com/LA_Studio/TraceIT.htm#TraceIT%20and%20Pangolin%20Lasershow%20Designer%20 2000 Accessed: July 27, 2014.

SOLLINGER. Basic Laser Projectors. Available on: http://www.laseranimation.com/en/products/lasersystems Accessed: July 27, 2014.

PHOENIX. Phoenix4 PRO/PROplus. Available on: http://www.phoenix-showcontroller.de/en/phoenix/pro-en/ Accessed: July 27, 2014.

Medialas. Mamba Elements. Available on: http://www.medialas-showlaser.de/mamba_elements.html?&L=1 Accessed: July 27, 2014.

GSI. Laser Products: Beam Delivery Technologies. Available on: http://www.gsig.com/Laser-Products Accessed: July 27, 2014.

LOBO. Projectors. Available on: http://www.lobo.de/index.php?id=lasershow_products&L=1&maincat_uid=14&subcat_uid=0 Accessed: July 27, 2014.

O. Halabi, N. Chiba. “Effcient vector-oriented graphic drawing method for laser-scanned display”. Elsevier Displays. Vol. 30. 2009. pp. 97-106. DOI: https://doi.org/10.1016/j.displa.2009.03.003

V. Jimenez, H. Cerecedo, H. Vazquez, L. Beltran, U. Filobello. “A parametric piecewise-linear approach to laser projection”. Computational and Applied Mathematics. DOI:10.1007/s40314-013-0099-2. 2013. pp. 1-21. DOI: https://doi.org/10.1007/s40314-013-0099-2

L. Chua, A. Deng. “Canonical piecewise-linear modeling”. IEEE Transactions on Circuits and Systems. Vol. 33. 1986. pp. 511-525. DOI: https://doi.org/10.1109/TCS.1986.1085952

L. Chua, A. Deng. “Canonical piecewise-linear representation”. IEEE Transactions on Circuits and Systems. Vol. 35. 1988. pp. 101-111. DOI: https://doi.org/10.1109/31.1705

S. Kang, L. Chua. “A global representation of multidimensional piecewise-linear functions with linear partitions”. IEEE Transactions on Circuits and Systems. Vol. 25. 1978. pp. 938-940. DOI: https://doi.org/10.1109/TCS.1978.1084401

S. Kang, L. Chua. “Section-wise piecewise-linear functions: Canonical representation, properties and applications”. IEEE. Vol. 65. 1977. pp. 915-929. DOI: https://doi.org/10.1109/PROC.1977.10589

V. Jimenez, L. Hernandez, A. Sarmiento. Decomposed Piecewise-Linear Models by Hyperplanes Unbending. Proceedings of the IEEE International Symposium on Circuits and Systems. Island of Kos, Greece, 2006. pp. 2353-2356.

V. Jimenez. Decomposed Piecewise-Linear Representation Applied to DC Analysis. PhD Thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica. Puebla, México. 2006. pp. 47-68.

V. Jimenez, E. Muñoz, H. Vazquez, J. Chavez, L. Hernandez, L. Sarmiento, M. Cerdan. “A PiecewiseLinear Fitting Technique for Multivalued Twodimensional Paths”. Journal of Applied Research and Technology. Vol. 11. 2013. pp. 636-640. DOI: https://doi.org/10.1016/S1665-6423(13)71571-2

LASERPHOTO. LP20 Galvanometer Based Optical Scanner. Available on: http://www.laserphoto.org/en/pic/digi/20085510211232.pdf Accessed: July 27, 2014.

SpectraScan. Samples-Software Downloads Avilable on: http://www.lasershs.com/Sample_Download.htm Accessed: July 27, 2014.

Published

2014-11-13

How to Cite

Jiménez-Fernández, V. M., Cerecedo-Núñez, H. H., Padilla-Sosa, P., Beltrán-Parrazal, L., Vazquez-Leal, H., & Filobello-Niño, U. (2014). A comparative study between Piecewise-Linear and Point-Based methodologies for galvanometer mirror systems . Revista Facultad De Ingeniería Universidad De Antioquia, (73), 124–133. https://doi.org/10.17533/udea.redin.18977