Daily rainfall interpolation models obtained by means of genetic programming


  • Maritza Liliana Arganis Juárez Universidad Nacional Autónoma de México
  • Margarita Preciado Jiménez Instituto Mexicano de Tecnología del Agua.
  • Katya Rodríguez Vázquez Universidad Nacional Autónoma de México




Daily rainfall, genetic programming, interpolation models, isohyet, geographic coordinates


The evolutionary computing algorithm of genetic programming was applied to obtain mathematical daily rainfall interpolation models in one climatologic station, using the measured data in nearby stations in Cutzamala River basin in Mexico. The obtained models take into account both the geographical coordinates of the climatologic station and also its elevation; the answer of these models was compared against those obtained by means of multiple linear regression and a nonlinear model with parameters obtained with genetic algorithms; genetic programming models gave the best performance. Isohyets maps were then obtained to compare the spatial shapes between measured and calculated rainfall data in Cutzamala River Basin, for a maximum historic storm recorded in 2006 year, showing an adequate agreement of the results in case of rainfalls greater than 23 mm. Genetic programming represent a useful practical tool for approaching mathematical models of variables applied in engineering problems and new models could be obtained in several basins by applying these algorithms.

= 139 veces | PDF
= 182 veces|


Download data is not yet available.

Author Biographies

Maritza Liliana Arganis Juárez, Universidad Nacional Autónoma de México

Investigadora titular, profesora de asignatura. Instituto de Ingeniería.

Coordinación de Hidráulica.

Margarita Preciado Jiménez, Instituto Mexicano de Tecnología del Agua.

Especialista en Hidráulica

Subcoordinación de Hidrología Superficial

Katya Rodríguez Vázquez, Universidad Nacional Autónoma de México

Investigador titular, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas

.Ingeniería de sistemas computacionales y automatización


C. Liu, F. Chen. “Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan”. Paddy and Water Environment. Vol. 10. 2012. pp. 209-222.

Z. Bargaoui, A. Chebbi. “Comparison of two kriging interpolation methods Applied to spatio-temporal rainfall”. Journal of Hydrology . Vol. 365. 2009. pp. 56-73.

N. Memarsadeghi, D. Mount. Cokriging Interpolation . Scholarly paper for Master’s degree, Computer Science Department of University of Maryland. Available on: https://www.cs.umd.edu/sites/default/files/scholarly_papers/cokriging_1.pdf%20. Accessed: December 6th, 2014.

A. Gires, I. Tchiguirinskaia, D. Schertzer, S. Lovejoy. “Analyses multifractales et spatio-temporelles des précipitations du modèle Méso-NH et des données radar”. Hydrol. Sci. J. Vol 56. 2011. pp 380-396.

S. Karmakar, M. Kowar, P. Guhathakurta. Spatial Interpolation of Rainfall Variables using Artificial Neural Network . Proceedings of the International Conference on Advances in Computing, Communication and Control (ICAC3’09). Mumbai, India. 2009. pp. 547-552.

L. Hay, R. Viger, G. McCabe . “Precipitation interpolation in mountainous regions using multiple linear regression”. Hydrology, Water Resources and Ecology in Headwaters ( Proceedings of the HeadWater’98 Conference held at Meran/Merano, Italy). N.° 248. 1998. pp. 33-38.

Mair, A. Fares. “Comparison of Rainfall Interpolation Methods in a Mountainous Region of a Tropical Island”. J. Hydrol. Eng. Vol. 16. 2011. pp. 371-383.

S. Ly, C. Charles, A. Degré. “Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: A review”. Biotechnol. Agron. Soc. Environ. Vol. 17. 2013. pp. 392-406.

J. Rabuñal, J. Dorado, A. Pazos, D. Pereira. “A new approach to the extraction of ANN rules and to their generalization capacity through GP”. Neural Computation . Vol. 16. 2004. pp. 1483-1523.

M. Arganis, R. Val, J. Prats, K. Rodriguez, M. Dolz, R. Dominguez. “Genetic programming and standardization in water temperature modeling”. Advances in Civil Engineering. Vol. 2009. 2009. pp. 1-10.

R. Dominguez, O. Fuentes, M. Arganis, A. Mendoza. “Calculation of Double Bivariate Gumbel probability density function via a Genetic Algorithm: Application to Huites dam basin”. Journal of Flood Engineering (IFE). Vol. 21. 2009. pp. 293-300.

J. Preciado, M. Ocon, M. Arganis. Approximation of bivariate empirical distribution function of the maximum historic inflow avenues to a dam using genetic programming. Proceedings of the XXII Congress of Hydraulics. Acapulco, Mexico. 2012. pp. 7-9.

K. Rodriguez, M. Arganis, C. Cruickshank, R. Dominguez. “Rainfall-runoff modeling using genetic programming”. Journal of Hydroinformatics . Vol. 14. 2012. pp. 108-121.

W. Banzhaf, P. Nordin, R. Keller, F. Francone. Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. 1 st ed. Ed. Morgan Kaufmann. San Francisco, USA. 1998. pp. 481.

N. Cramer. A Representation for the Adaptive Generation of Simple Sequential Programs. Proceedings of the 1 st Int. Conf. on Genetic Algorithms and the Applications. Pittsburg, USA. 1985. pp. 183- 187.

J. Koza. Hierarchical Genetic Algorithms Operating on Populations of Computer Programs. Proceedings of the 11 th Int. Joint Conf. on Artificial Intelligence. Detroit, USA. 1989. pp. 768-774.

D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning . 1 st ed. Ed. Addison Wesley. Reading, USA. 1989. pp. 412.

The MathWorks. MATLAB Reference Guide . The MathWorks, Inc. Natick, USA. 1992-2015.

Instituto Nacional de Ecología. La cuenca del río Balsas . Available on: http://www2.inecc.gob.mx/publicaciones/libros/402/cuencabalsas.html. Accessed: April 7, 2015.




How to Cite

Arganis Juárez, M. L., Preciado Jiménez, M., & Rodríguez Vázquez, K. (2015). Daily rainfall interpolation models obtained by means of genetic programming. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 189–201. https://doi.org/10.17533/udea.redin.n75a18