Oxidación de geraniol utilizando niobia modificada con peróxido de hidrógeno

Autores/as

  • Jairo Cubillos Universidad Pedagógica y Tecnológica de Colombia
  • José J. Martínez Universidad Pedagógica y Tecnológica de Colombia https://orcid.org/0000-0002-4906-7121
  • Hugo Rojas Universidad Pedagógica y Tecnológica de Colombia https://orcid.org/0000-0003-3906-4522
  • Norman Marín-Astorga Eurecat U.S.

DOI:

https://doi.org/10.17533/udea.redin.n91a10

Palabras clave:

óxido de niobio, sitios peroxo, regioselectividad

Resumen

El óxido de niobio (niobia), N b2O5 y N b2O5 modificado con H2O2 fue explorado como catalizador en la epoxidación de geraniol a 1 bar y temperatura ambiente. Las propiedades estructurales y morfológicas de ambos catalizadores fueron muy similares, lo cual sugiere que no se formaron especies de complejo peroxo. El orden de la reacción fue uno con respecto a geraniol y cercano a cero con respecto al H2O2. Estos valores son consistentes con los datos cinéticos obtenidos. La epoxidación de geraniol fue favorecida en presencia de grupos peroxo, que se alcanzan utilizando un exceso de H2O2. Además, se encontró que, bajo las condiciones de reacción utilizadas en este trabajo, el geraniol fácilmente adoptó un estado de transición de un anillo de tres miembros como la estructura más favorable para este tipo de compuesto.

|Resumen
= 339 veces | PDF (ENGLISH)
= 286 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jairo Cubillos, Universidad Pedagógica y Tecnológica de Colombia

Facultad de Ciencias, Departamento de Química, Grupo de Catálisis.

José J. Martínez, Universidad Pedagógica y Tecnológica de Colombia

Grupo de Catálisis, Escuela de Ciencias Químicas.

Hugo Rojas, Universidad Pedagógica y Tecnológica de Colombia

Grupo de Catálisis, Escuela de Ciencias Químicas.

Norman Marín-Astorga, Eurecat U.S.

Doctor en Química.

Citas

A. Maniatakou and et al., “Synthesis, structural and DFT studies of a peroxo-niobate complex of the biological ligand 2-quinaldic acid,” Polyhedron, vol. 27, no. 16, pp. 3398–3408, Nov. 2008.

C. R. Waidmann, A. G. DiPasquale, and J. M. Mayer, “Synthesis and reactivity of oxo-peroxo-vanadium(v) bipyridine compounds,” Inorg. Chem., vol. 49, no. 5, pp. 2383–2391, Jan. 2010.

L. C. Passoni, M. R. H. Siddiqui, A. Steiner, and I. V. Kozhevnikov, “Niobium peroxo compounds as catalysts for liquid-phase oxidation with hydrogen peroxide,” J. Mol. Cat. A: Chem., vol. 153, no. 1-2, pp. 103–108, Mar. 2000.

L. C. A. Oliveira and et al., “Pure niobia as catalyst for the oxidation of organic contaminants: Mechanism study via ESI-MS and theoretical calculations,” Chem. Phys. Lett., vol. 446, no. 1-3, pp. 133–137, Sep. 2007.

L. J. Burcham, J. Datka, and I. E. Wachs, “In situ vibrational spectroscopy studies of supported niobium oxide catalysts,” J. Phys. Chem., vol. 103, no. 29, pp. 6015–6024, Jun. 1999.

D. Bayot, B. Tinant, and M. Devillers, “Water-soluble niobium peroxo complexes as precursors for the preparation of Nb-based oxide catalysts,” Catal. Today, vol. 78, no. 1-4, pp. 439–447, Feb. 2003.

M. Kantcheva, H. Budunoğlu, and O. Samarskaya, “Characterization of Zr6Nb2O17 synthesized by a peroxo route as a novel solid acid,” Catal. Commun., vol. 9, no. 5, pp. 874–879, Mar. 2008.

A. Esteves and et al., “New materials based on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants,” Catal. Commun., vol. 10, no. 3, pp. 330–332, Dec. 2008.

K. T. G. Carvalho, A. C. Silva, L. C. A. Oliveira, M. Gonçalves, and Z. M. Magriotis, “Nióbia sintética modificada como catalisador na oxidação de corante orgânico: utilização de H2O2 e O2 atmosférico como oxidantes,” Quím. Nova, vol. 32, no. 6, pp. 1373–1377, 2009.

T. C. Ramalho and et al., “The molecular basis for the behaviour of niobia species in oxidation reaction probed by theoretical calculations and experimental techniques,” Mol. Phys., vol. 107, no. 2, pp. 171–179, Oct. 2010.

L. C. A. Oliveira, M. Gonçalves, D. Q. L. Oliveira, A. L. N. Guarieiro, and M. C. Pereira, “Síntese e propriedades catalíticas em reações de oxidação de goethitas contendo niobio,” Quím. Nova, vol. 30, no. 4, pp. 925–929, Aug. 2007.

M. Ziolek and et al., “Catalytic performance of niobium species in crystalline and amorphous solids—gas and liquid phase oxidation,” Appl. Catal A: Gen., vol. 391, no. 1-2, pp. 194–204, Jan. 2011.

N. Marin and et al., “Control of the chemoselectivity in the oxidation of geraniol over lanthanum, titanium and niobium catalysts supported on mesoporous silica MCM-41,” Top. Catal., vol. 55, no. 7-10, pp. 620–624, Jul. 2012.

N. T. Prado and et al., “Modified niobia as a new catalyst for selective production of dimethoxymethane from methanol,” Energy & Fuels, vol. 24, no. 9, pp. 4793–4796, Aug. 2010.

N. Marin and et al., “Nb2O5 as heterogeneous catalysts for the selective oxidation of geraniol,” Curr. Org. Chem., vol. 16, no. 23, pp. 2797–2801, 2012.

X. Secordel and et al., “TiO2-supported rhenium oxide catalysts for methanol oxidation: Effect of support texture on the structure and reactivity evidenced by an operando raman study,” Catal. Today., vol. 155, no. 3-4, pp. 177–183, Oct. 2010.

C. M. de Souza, S. C. de Souza, E. Roditi, and G. Gelbard, “Oxidations of benzyl alcohol by hydrogen peroxide in the presence of complexed peroxoniobium (V) species,” J. Chem. Res, (S)., no. 3, pp. 92–93, 1997.

G. Haxhillazi, “Preparation, structure and vibrational spectroscopy of tetraperoxo complexes of CrV+, VV+, NbV+ and TaV+,” Ph.D. dissertation, Siegen Univ., Siegen, Germany, 2003.

L. Dragone, P. Moggi, G. Predieri, and R. Zanoni, “Niobia and silica–niobia catalysts from sol–gel synthesis: an X-ray photoelectron spectroscopic characterization,” Appl. Surf. Sci., vol. 187, no. 1-2, pp. 82–88, Feb. 2002.

T. C. Ramalho and et al., “The molecular basis for the behaviour of niobia species in oxidation reaction probed by theoretical calculations and experimental techniques,” Mol. Phys., vol. 107, no. 2, pp. 171–179, 2009.

F. J. Wong, N. Hong, and S. Ramanathan, “Orbital splitting and optical conductivity of the insulating state of NbO2,” Phys. Rev. B, vol. 90, no. 11, pp. 115 135–1–115 135–8, Sep. 2014.

A. Darlinski and J. Halbritter, “On angle resolved xray photoelectron spectroscopy of oxides, serrations, and protusions at interfaces,” Vac. Sci. & Technol. A., vol. 5, no. 4, pp. 1235–1240, 1987.

A. B. Posadas, A. O’Hara, S. Rangan, R. A. Bartynski, and A. A. Demkov, “Band gap of epitaxial in-plane-dimerized single-phase NbO2 films,” Appl. Phys. Lett., vol. 104, pp. 0 929 011–09 290 112, 2014.

Y. Gao, Y. Liang, and S. A. Chambers, “Synthesis and characterization of Nb-doped TiO2(110) surfaces by molecular beam epitaxy,” Surf. Sci., vol. 348, no. 1-2, pp. 17–27, Mar. 1996.

V. V. Atuchin, I. E. Kalabin, V. G. Kesler, and N. V. Pervukhina, “Nb 3d and O 1s core levels and chemical bonding in niobates,” J. Elect. Spect. Rel. Phenom., vol. 142, no. 2, pp. 129–134, Feb. 2005.

P. Chagas and et al., “A novel hydrofobic niobium oxyhydroxide as catalyst: Selective cyclohexene oxidation to epoxide,” Appl. Catal A: Gen., vol. 454, pp. 88–92, Mar. 2013.

B. X. Huang, K. Wang, J. S. Church, and Y. S. Li, “Characterization of oxides on niobium by raman and infrared spectroscopy,” Electr. Acta., vol. 44, no. 15, pp. 2571–2577, 1999.

A. A. McConnell, J. S. Aderson, and C. N. R. Rao, “Raman spectra of niobium oxides,” Spect. Acta Part A: Mol. Spect., vol. 32, no. 5, pp. 1067–1076, 1976.

F. Somma, A. Puppinato, and G. Strukul, “Niobia–silica aerogel mixed oxide catalysts: Effects of the niobium content, the calcination temperature and the surface hydrophilicity on the epoxidation of olefins with hydrogen peroxide,” Appl. Catal A: Gen., vol. 309, no. 1, pp. 115–121, Jul. 2006.

J. M. de S. e Silva, F. S. Vinhado, D. Mandelli, U. Schuchardt, and R. Rinaldi, “The chemical reactivity of some terpenes investigated by alumina catalyzed epoxidation with hydrogen peroxide and by DFT calculations,” J. Mol. Cat. A: Chem., vol. 252, no. 1-2, pp. 186–193, Jun. 2006.

A. Feliczak, A. Wawrzyńczak, and I. Nowak, “Selective catalytic oxidations of cyclohexene, thioether and geraniol with hydrogen peroxide. sensitivity to the structure of mesoporous niobosilicates,” Micropor. Mesopor. Mater., vol. 202, pp. 80–89, Jan. 2015.

M. P. Chaudhari and S. B. Sawant, “Kinetics of heterogeneous oxidation of benzyl alcohol with hydrogen peroxide,” Chem. Eng. J., vol. 106, no. 2, pp. 111–118, Feb. 2005.

A. M. Al-Ajlouni, O. Saglam, T. Diafla, and F. E. Kuhn, “Kinetic studies on phenylphosphopolyperoxotungstates catalyzed epoxidation of olefins with hydrogen peroxide,” J. Mol. Cat. A: Chem., vol. 287, no. 1-2, pp. 159–164, May 2008.

Descargas

Publicado

2019-04-22

Cómo citar

Cubillos, J., Martínez, J. J., Rojas, H., & Marín-Astorga, N. (2019). Oxidación de geraniol utilizando niobia modificada con peróxido de hidrógeno. Revista Facultad De Ingeniería Universidad De Antioquia, (91), 106–112. https://doi.org/10.17533/udea.redin.n91a10