Model simulation of heavy metals in river systems: case study the Negro river basin

Authors

DOI:

https://doi.org/10.17533/udea.redin.20190514

Keywords:

Surface water quality, ADZ-QUASAR, Sensitivity analysis, Uncertainty analysis, Model calibration

Abstract


This work describes a water quality model for heavy metals simulation in river systems. The proposed strategy comprises an 1D modeling approach with an ADZ-QUASAR extension to represent the behavior of heavy metals. This methodology seeks to strengthen their predictive capability based on the integration of variables which play an important role in the adsorption and desorption of these particles. The methodology was implemented in a reach of the Negro river (eastern side of Antioquia, Colombia), using Chromium, Copper and Nickel as heavy metals, because these are the heavy metals representative of the currents in the study area. Results are showing, with some degree of uncertainty, the capacity of the methodology to predict the behavior of environmental interesting substances, which makes it an important management tool.

|Abstract
= 256 veces | PDF
= 254 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Alberto Palacio Tobón, University of Antioquia

Associate Professor - Faculty of Engineering. Environmental Research and Management Group (GIGA), Environmental School.

Sara Cristina Vieira Agudelo, University of Antioquia

Associate Professor - Faculty of Engineering. Environmental Research and Management Group (GIGA), Environmental School.

Julio Cesar Saldarriaga Molina, University of Antioquia

Associate Professor - Faculty of Engineering. Environmental Research and Management Group (GIGA), Environmental School.

References

L. C. Giraldo, C. A. Palacio, R. D. Molina, and R. A. Agudelo, “Water quality modeling of the medellin river in the Aburrá Valley,” DYNA, vol. 82, no. 192, pp. 195–202, 2015.

J. S. Hernández, “Análisis de la capacidad predictiva de un modelo dinámico de calidad del agua aplicando técnicas de computación evolutiva, optimización multiobjetivo y procesamiento recursivo de datos,” M.S. thesis, Departamento de Ingeniería Civil y Agrícola, Universidad Nacional de Colombia, Bogotá D.C., Colombia, 2014.

T. F. Santos, “Modelación dinámica de calidad de agua del río bogotá con efluentes de curtiembres, tramo villapinzón - chocontá,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2010.

S. Kashefipour and A. Roshanfekr, Numerical Modelling of Heavy Metals Transport Processes in Riverine Basins, 03 2012.

A. Roshanfekr, S. M. Kashefipour, and N. Jafarzadeh, “Numerical modelling of heavy metals for riverine systems using a new approach to the source term in the ADE,” J. Hydroinform., vol. 10, no. 3, pp. 245–255, May 2018.

M. A. Jiménez, “Morphological representation of drainage networks, implications on solute transport and distributed simulation at the basin scale,” PhD dissertation, Department of Geosciences and Environment, Universidad Nacional de Colombia, Medellín, Colombia, 2015.

S. D. Blazkova, K. J. Beven, and P. J. Smith, “Transport and dispersion in large rivers: Application of the aggregated dead zone model,” in System Identification, Environmental Modelling, and Control System Design, L. Wang and H. Garnier, Eds. London, UK: Springer, 2012, pp. 367–382.

K. Richardson and P. A. Carling, “The hydraulics of a straight bedrock channel: Insights from solute dispersion studies,” Geomorphology, vol. 82, no. 1, pp. 98–125, Dec. 2006.

M. J. Lees, L. Camacho, and P. Whitehead, “Extension of the QUASAR river water quality model to incorporate dead-zone mixing,” Hydrol. Earth Syst. Sci., vol. 2, no. 2, pp. 353–365, 1998.

Plan de Ordenamiento del Recurso Hídrico (PORH) en los tramos receptores de vertimientos líquidos de la jurisdicción de la Corporación Autónoma Regional de los ríos Negro y Nare-CORNARE, CORNARE, Santuario, Antioquia, Colombia, 2011.

Rates, constants and kinetics formulations in surface water quality modeling, 2nd ed., U. S. Environmental Protection Agency, Athens, Georgia, 1985.

C. B. Chávez and R. A. Jaramillo, “Regionalización de la temperatura del aire en colombia,” Cenicafé, vol. 49, no. 3, pp. 224–230, 1998.

Diagnóstico sobre el uso actual, en términos de calidad del recurso hídrico en las corrientes superficiales de la región, como fase inicial para la formulación del Plan de Ordenamiento, CORNARE, Santuario, Antioquia, Colombia, 2011.

D. R. Montgomery and J. M. Bungton, “Channel-reach morphology in mountain drainage basins,” GSA Bulletin, vol. 109, no. 5, pp. 596–611, 1997.

L. B. Leopold and J. T. Maddock. (1953) The hydraulic geometry of stream channels and some physiographic implications. USGS. Washington, United States. [Online]. Available: https://on.doi.gov/2Pup5T0

M. Jaramillo, L. A. Camacho Botero, and J. Velez, “A stream morphology classification for eco-hydraulic purposes based on geospatial data: a solute transport application case,” AGU Fall Meeting Abstracts, Dec. 2010.

L. A. Camacho, “Development of a hierarchical modeling framework for solute transport under unsteady ow conditions in rivers,” PhD dissertation, Imperial College of Science Technology and Medicine, London, UK, 2000.

R. A. González, “Determinación del comportamiento de la fracción dispersiva en ríos característicos de montaña,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2008.

L. M. Ruiz, “Implementación de un modelo de calidad de agua aplicable a la simulación de metales pesados en corrientes con caso de estudio en la cuenca del río Negro,” M.S. thesis, Universidad de Antioquia, Medellín, Colombia, 2017.

T. Valente, M. João, J. A. Grande, M. L. de la Torre, and J. Borrego, “pH, electric conductivity and sulfate as base parameters to estimate the concentration of metals in AMD using a fuzzy inference system,” J. Geochem. Explor., vol. 124, pp. 22–28, Jan. 2013.

(2015, Mar. 17) Resolución 631. [Online]. Available: https://bit.ly/2zagoIX

D. Cespedes, “Implementación de un modelo agregado de flujo y transporte de metales pesados en el río bogotá,” M.S. thesis, Universidad de los Andes, Bogotá, Colombia, 2002.

J. D. Allison and T. L. Allison, “Partition coefficients for metals in surface water, soil, and waste,” EPA, Washington, United States, Tech. Rep. Rep EPA600R05, 2005.

L. C. Van, Principles of sediment transport in rivers, estuaries and coastal seas, 2nd ed. Amsterdam, Netherlands: Aqua publications, 1993.

C. A. Palacio, R. Mayerle, M. Toro, and N. Jiménez, “Modelling of ow in a tidal at area in the South-Eastern German Bight,” in Die Küste: Archive for Research and Technology on the North Sea and Baltic Coast, K. N. Ostsee, Ed. Heide, Germany: Boyens Medien GmbH & Co. KG, 2005, pp. 141–174.

C. A. Palacio, “Metodología para la validación de modelos hidrodinámicos utilizando amplia información de campo: Aplicación a la bahía meldorf en la costa del mar del norte alemán,” PhD dissertation, Universidad Nacional de Colombia, Medellín, Colombia, 2002.

J. D. Giraldo, M. Díaz, and L. Camacho, “Modelo distribuido de tránsito de crecientes en cuencas. avances en recurso hidráulicos,” Avances en Recursos Hidráulicos, vol. 12, pp. 91–101, Oct. 2005.

K. J. Beven and A. M. Binley, “The future of distributed models: model calibration and uncertainty prediction,” Hydrological Processes, vol. 6, no. 3, pp. 279–298, Jul. 1992.

Y. Jiang, Z. Nan, and S. Yang, “Risk assessment of water quality using Monte Carlo simulation and artificial neural network method,” J. Environ. Manage., vol. 122, pp. 130–136, Jun. 2013.

L. A. Camacho and M. M. Cantor, “Calibración y análisis de la capacidad predictiva de modelos de transporte de solutos en un río de montaña colombiano,” Avances en Recursos Hidráulicos, no. 14, pp. 39–52, 2006.

J. Nash and J. Sutclie, “River ow forecasting through conceptual models part I - A discussion of principles,” Journal of Hydrology, vol. 10, no. 3, pp. 282–290, Apr. 1970.

H. V. Gupta, S. Sorooshian, and P. O. Yapo, “Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration,” J. Hydrol. Eng., vol. 4, no. 2, pp. 135–143, Apr. 1999.

D. N. Moriasi and et al., “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations,” Transactions of the ASABE, vol. 50, no. 3, pp. 885–900, 2007.

J. Kotaś and Z. Stasicka, “Chromium occurrence in the environment and methods of its speciation,” Environmental Pollution, vol. 107, no. 3, pp. 263–283, Mar. 2000.

Downloads

Published

2019-05-10

How to Cite

Palacio Tobón, C. A., Vieira Agudelo, S. C., Saldarriaga Molina, J. C., & Ruiz Jaramillo, L. M. (2019). Model simulation of heavy metals in river systems: case study the Negro river basin. Revista Facultad De Ingeniería Universidad De Antioquia, (92), 19–35. https://doi.org/10.17533/udea.redin.20190514