Development of an armored upper limb exoskeleton

Keywords: Assistive robotics, wearable robots, robot kinematics, mechatronics


Personal safety is a critical aspect of daily life, but also in the military. Active soldiers often have to carry heavy gear during missions, which puts pressure on their backs. Therefore, the military must come up with new technologies that allow both protection and movement. In this paper, it is explaining the development of an armored upper limb exoskeleton with three degrees of freedom. To ensure portability, it is used battery-fed DC actuators. The system was encased in a metal matrix that doubles up as a protective plate. The exoskeleton, the control system, the actuators, and the plate are integrated so that they offer protection while supporting the flexion and extension of the upper limb.

= 215 veces | PDF
= 102 veces|


Download data is not yet available.

Author Biographies

Santiago López-Méndez, Universidad Pontificia Bolivariana
M.Eng. Engineering Student, Universidad Pontificia Bolivariana.  Research group GINUMA UPB
Hader Vladimir Martínez-Tejada, Universidad Pontificia Bolivariana
PhD. Engineering Doctor; teacher Universidad Pontificia Bolivariana. Research group GINUMA UPB
Marco Fidel Valencia-García, Universidad EIA
PhD. Engineering Doctor; teacher Universidad EIA.  Research group MAPA universidad EIA


The Titan Arm, ASTM Standardization News, 2013.

E. Yagi, D. Harada, and M. Kobayashi, “Upper-limb power-assist control for agriculture load lifting,” Int. J. Autom. Technol., vol. 3, no. 6, 2009. [Online]. Available: p0716

H. Kawasaki and et al, “Hand motion assist robot for rehabilitation therapy,” J. Robot. Mechatronics, vol. 26, no. 1, pp. 103–104, Feb. 2014.

T. Ando and et al, “Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: Extraction of elbow flexion movement using STFTs and TDNN,” J. Robot. Mechatronics, vol. 24, no. 1, february 2012. [Online]. Available: 2012.p0141

L. Xiangpan, “Design of wearable wearable wearable wearable power assist wear for low back support support support support using pneumatic pneumatic pneumatic pneumatic actuators,” Ph.D thesis, Okayama University, Okayama, Japan, 2013.

X. Wang, Q. Song, X. Wang, and P. Liu, “Kinematics and dynamics analysis of a 3-DOF upper-limb exoskeleton with an internally rotated elbow joint,” Appl. Sci., vol. 8, pp. 1–19, Mar. 2018.

M. H. Rahman, M. Saad, J. P. Kenné, P. S. Archambault, and T. K. Ouimet, “Development of a 4DoFs exoskeleton robot for passive arm movement assistance,” Int. J. Mechatronics Autom, vol. 2, no. 1, January 2012. [Online]. Available: IJMA.2012.046587

Y. Matsumoto and et al, “Development of an exoskeleton to support eating movements in patients with essential tremor,” J. Robot. Mechatronics, vol. 25, no. 6, pp. 949–958, Dec. 2013.

J. L. Pons, Wearable Robots: Biomechatronic Exoskeletons. Madrid, España: John Wiley & Sons, 2008.

K. Anam and A. A. Al-Jumaily, “Active exoskeleton control systems: State of the art,” Procedia Eng., vol. 41, 2012. [Online]. Available:

I. G. Crouch, “Introduction to armour materials,” in The Science of Armour Materials, I. G. Crouch, Ed. United Kingdom: Elsevier, 2016, pp. 1–54.

C. M. Wenig, C. O. Schmidt, T. Kohlmann, and B. Schweikert, “Costs of back pain in germany,” Eur. J. Pain, vol. 13, no. 3, March 2009. [Online]. Available:

(2015) From HULC to MANTIS to FORTIS exoskeleton: Development history. Exoskeleton. Accessed May. 09, 2017. [Online]. Available:

xos 2. Exoskeleton. Accessed May. 02, 2017. [Online]. Available:

Raytheon XOS 2 exoskeleton, second-generation robotics suit. Army-Technology. Accessed Nov. 27, 2017. [Online]. Available:

V. Sanchéz and M. J. Sánchez, Materiales para la Defensa, 1st ed. Madrid, España: VA. Impresores, 2012.

H. Vladimir and M. F. Valencia, “Semisolid processing of Al/β-SiC composites by mechanical stirring casting and high pressure die casting,” in Recent Researches in Metallurgical Engineering - From Extraction to Forming, G. Ahuett and A. Arrambide, Eds. Intech Open Science, 2012, pp. 125–142.

M. F. Valencia, “Procesamiento semisólido de compuestos Al/SiC por agitación mecánica, para elaborar componentes compoforjados,” M.S. thesis, Universidad Pontificia Bolivariana,Medellín, Colombia, 2011.

W. Chen and et al, “Multi-scale experiments on soft body armors under projectile normal impact,” Int. J. Impact Eng., vol. 108, October 2017. [Online]. Available: 04.018

H. V. Martínez and et al, “One-step SSM process by MSC & HPDC for metallic components,” Solid State Phenom., vol. 141, January 2008. [Online]. Available: 141-143.103

S. Balasubramanian and et al, “RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions,” in Virtual Rehabilitation, Vancouver, BC, Canada, 2008, pp. 163–167.

W. Yu, J. Rosen, and X. Li, “PID admittance control for an upper limb exoskeleton,” in American Control Conference, San Francisco, CA, USA, 2011, pp. 1124–1129.

M. Ishii, K. Yamamoto, and K. Hyodo, “Stand-alone wearable power assist suit –development and availability–,” J. Robot. Mechatronics, vol. 17, no. 5, March 2006. [Online]. Available: 1299/kikaic.72.857

P. Letier, “Bras exosquelette haptique conception et contrôle laboratoire des structures actives,” PhD dissertation, Université Libre de Bruxelles, Bruxelles, Belgium, 2010.

M. Couvertier, T. Monnet, and P. Lacouture, “Identification of human body segment inertial parameters,” in 22nd Congr. Eur. Soc. Biomech., Lyon, France, 2016.

B. Ugurlu, M. Nishimura, K. Hyodo, M. Kawanishi, and T. Narikiyo, “Proof of concept for robot-aided upper limb rehabilitation using disturbance observers,” IEEE Trans. Human-Machine Syst., vol. 45, no. 1, pp. 110–118, Feb. 2015.

J. Clerval, R. Lacombe, M. Adolphe, B. Zagrodny, and Z. Kirchof, “Center of mass of human’s body segments,” Mech. Mech. Eng, vol. 21, no. 3, pp. 485–497, 2017.

A. Barrientos, C. Balaguer, L. F. Peñin, and R. Aracil, Fundamentos de Robótica, 2nd ed. Aravaca, Madrid: McGraw-Hill, 2007.

J. Rosen, J. C. Perry, N. Manning, S. Burns, and B. Hannaford, “The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton,” in 12th International Conference on Advanced Robotics, Seattle, WA, USA, 2005.