Acciones para la adaptación y mitigación del cambio climático: El caso de Madrid

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20200795

Palabras clave:

soluciones basadas en la naturaleza, sostenibilidad, innovación

Resumen

La innovación sistémica debe ser el motor que potencie las acciones orientadas a la transformación de las ciudades frente al cambio climático. Esta comprende transformaciones de carácter ambiental, social, económico, financiero, técnico, regulatorio y de gobernanza, que soporten el cambio definitivo en las ciudades. Las Soluciones Basadas en la Naturaleza (SBN) pueden ser parte de las herramientas para hacer frente a los desafíos a los que nos enfrentamos. El objetivo de esta investigación es definir un marco de acción en las ciudades para la implementación de las SBN, que demuestre la importancia de cuantificar sus beneficios en términos medioambientales y socioeconómicos, para el impulso del diseño de políticas públicas y la inversión en este campo. Este trabajo se divide en dos partes. En la primera parte, se analizan algunas de las medidas europeas en el ámbito del desarrollo sostenible en ciudades, centrando la investigación en el caso de Madrid. Y en la segunda parte, se exponen algunos casos prácticos para reflejar las medidas y acciones tomadas con la finalidad de impulsar la implementación de las SBN en la ciudad de Madrid. Como resultado, se identifican potenciales palancas de cambio para la implementación de las SBN, dentro de las que destaca la importancia de cuantificar sus efectos para demostrar el valor potencial que se puede generar en las ciudades.

|Resumen
= 1161 veces | PDF (ENGLISH)
= 562 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Valentina Oquendo-Di Cosola, Universidad Politécnica de Madrid

 Arquitecta de Diseño Sostenible, Departamento de Construcción y Tecnología Arquitectónicas .

Jorge Adán Sánchez-Reséndiz, Universidad Politécnica de Madrid

Doctor en Arquitectura, Tecnologías de Construcción y Arquitectura.

Lorenzo Olivieri, Universidad Politécnica de Madrid

Profesor Asociado en Ingeniería Eléctrica y de Iluminación, Departamento de Construcción y Tecnología en Arquitectura (DCTA).

Francesca Olivieri, Universidad Politécnica de Madrid

Doctora en Arquitectura y Profesora Asociada, Departamento de Construcción y Tecnología en Arquitectura (DCTA).

Citas

Sustainable development goals. United Nations. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2Ce3kVj

(2018) Seminario UPM: Alinear la investigación con los ODS: Una oportunidad de financiación. Universidad Politécnica de Madrid. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2WjK5AO

(2011) Las ciudades y el cambio climático: Orientaciones para políticas. United Nations Human Settlements Programme. Río de Janeiro, Brasil. [Online]. Available: https://bit.ly/2Wk4WUk

“Sustainable development report 2019,” Sustainable Development Solutions Network, New York, USA, Tech. Rep., Jun. 2019.

S. Sassen. (2013, Oct. 24) Los estados se están empobreciendo demasiado. [Online]. Available: https://bit.ly/3j1CNLF

(2019) Transformation, in time EIT climate-KIC strategy 2019-2022. EIT Climate-KIC. Brussels, Belgium. [Online]. Available: https://bit.ly/2Zrii32

(2019) Call to action: Call for proposals for 2019/2020. EIT Climate-KIC. Brussels, Belgium. [Online]. Available: https://bit.ly/3gXzpQ4

M. Mazzucato. (1996, Aug.) Mission-oriented research and innovation in the european union. European Commission. Brussels, Belgium. [Online]. Available: http://www.Amdahl.com/doc/products/bsg/intra/intra/html

V. Oquendo, A. Sánchez, and L. Olivieri, “Nature based solutions for cities resilience: Opportunities for action in Madrid,” in ICSC-CITIES, 2019.

D. Schröter and et al., “Ecosystem service supply and vulnerability to global change in Europe,” Science, vol. 310, no. 5752, November 25 2005. [Online]. Available: https://doi.org/10.1126/science.1115233

“Nature-based solutions and re-naturing cities,” European Commission, Brussels, Belgium, Tech. Rep., 2015.

“Nature+ : towards nature-based solutions,” International Union for Conservation of Nature, Gland, Switzerland, Tech. Rep., 2013.

Horizon 2020. European Commission. Accessed Sep. 2019. [Online]. Available: https://bit.ly/3fufQyv

N. Mestre, “NBS,(no más) soluciones (tan) basadas en la naturaleza: metabolismos, ecosistemas y otra naturaleza envasada,” Arquitectura: Revista del Colegio Oficial de Arquitectos de Madrid, no. 375, pp. 46–51, 2018.

C. M. Raymond and et al., “An impact evaluation framework to support planning and evaluation of nature-based solutions projects,” EKLIPSE, Wallingford, UK, Tech. Rep., 2017.

S. Charoenkit and S. Yiemwattana, “Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review,” Build.

Environ., vol. 105, August 15 2016. [Online]. Available: https://doi.org/10.1016/j.buildenv.2016.05.031

L. Chen, C. Liu, R. Zou, M. Yang, and Z. Zhang, “Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment,”Environ. Pollut., vol. 208, January 2016. [Online]. Available: https://doi.org/10.1016/j.envpol.2015.09.006

A. Przybysz, A. Sæbø, H. Hanslin, and S. Gawroński, “Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time,” Sci. Total Environ., vol. 481, May 15 2014. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2014.02.072

R. Szep and et al., “The dry deposition of PM10 and PM2.5 to the vegetation and its health effect in the ciuc basin,”Rev. Chim., vol. 67, no. 4, pp. 639–644, Apr. 2016.

W. Kuttler and A. Strassburger, “Air quality measurements in urban green areas – a case study,” Atmos. Environ., vol. 33, no. 24-25, October 1999. [Online]. Available: https://doi.org/10.1016/S1352-2310(99)00151-X

N. H. Wong and et al., “Thermal evaluation of vertical greenery systems for building walls,” Build. Environ., vol. 45, no. 3, March 2010. [Online]. Available: https://doi.org/10.1016/j.buildenv.2009.08.005

L. Mariani and et al., “Climatological analysis of the mitigating effect of vegetation on the urban heat island of Milan, Italy,” Sci. Total Environ., vol. 569, November 01 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.06.111

S. Nadia, S. Noureddine, N. Hichem, and D. Djamila, “Experimental study of thermal performance and the contribution of plant-covered walls to the thermal behavior of building,” Energy Procedia, vol. 36, 2013. [Online]. Available: https://doi.org/10.1016/j.egypro.2013.07.113

A. Price, E. C. Jones, and F. Jefferson, “Vertical greenery systems as a strategy in urban heat island mitigation,” Water. Air. Soil Pollut., vol. 226, no. 8, July 2015. [Online]. Available: https://doi.org/10.1007/s11270-015-2464-9

I. Karakounos, A. Dimoudi, and S. Zoras, “The influence of bioclimatic urban redevelopment on outdoor thermal comfort,” Energy Build., vol. 158, January 01 2018. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.035

A. M. Lacasta, A. Peñaranda, and I. R. Cantalapiedra, “Green streets for noise reduction,” in Nature Based Strategies for Urban and Building Sustainability, G. Perez and K. Perini, Eds. Oxford, UK: Butterworth-Heinemann, 2018, pp. 181–190.

N. Fernández, M. Urrestarazu, and D. L. Valera, “Effects of a vertical greenery system on selected thermal and sound mitigation parameters for indoor building walls,” J. Food, Agric. Environ., vol. 10, no. 3, pp. 1025–1027, Jul. 2012.

R. Bullen and F. Fricke, “Sound propagation through vegetation,” J. Sound Vib., vol. 80, no. 1, January 08 1982. [Online]. Available: https://doi.org/10.1016/0022-460X(82)90387-X

T. Renterghem, D. Botteldooren, and K. Verheyen, “Road traffic noise shielding by vegetation belts of limited depth,” J. Sound Vib., vol. 331, no. 10, May 07 2012. [Online]. Available: https://doi.org/10.1016/j.jsv.2012.01.006

M. Hornikx and T. Renterghem, “The potential of vegetation for reducing road traffic noise at urban quiet sides,” in 9th European conference on noise control, Prague, Czech Republic, 2012, pp. 949–954.

A. Afshari, “A new model of urban cooling demand and heat island—application to vertical greenery systems (VGS),” Energy Build., vol. 157, December 15 2017. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.01.008

D. H. S. Duarte, P. Shinzato, C. Santos, and C. A. Alves, “The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate,” Urban Clim., vol. 14, December 2015. [Online]. Available: https://doi.org/10.1016/j.uclim.2015.09.006

C. Jim and H. He, “Estimating heat flux transmission of vertical greenery ecosystem,” Ecol. Eng., vol. 37, no. 8, August 2011. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2011.02.005

T. A. Moya, A. Dobbelsteen, M. Ottelé, and P. M. Bluyssen, “A review of green systems within the indoor environment,” Indoor Built Environ., vol. 28, no. 3, 2019. [Online]. Available: https://doi.org/10.1177/1420326X18783042

C. Bartesaghi, P. Osmond, and A. Peters, “Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources,” Sol. Energy, vol. 166, May 15 2018. [Online]. Available: https://doi.org/10.1016/j.solener.2018.03.008

P. M. F. Wouw, E. J. M. Ros, and H. J. H. Brouwers, “Precipitation collection and evapo(transpi)ration of living wall systems: A comparative study between a panel system and a planter box system,” Build. Environ., vol. 126, December 2017. [Online]. Available: https://doi.org/10.1016/j.buildenv.2017.10.002

E. Cubi, N. F. Zibin, S. J. Thompson, and J. Bergerson, “Sustainability of rooftop technologies in cold climates: Comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels,” Journal of Industrial Ecology, vol. 20, no. 2, March 2015. [Online]. Available:

https://doi.org/10.1111/jiec.12269

Z. Azkorra and et al., “Evaluation of green walls as a passive acoustic insulation system for buildings,” Appl. Acoust., vol. 89, March 2015. [Online]. Available: https://doi.org/10.1016/j.apacoust.2014.09.010

I. Susorova, M. Angulo, P. Bahrami, and B. Stephens, “A model of vegetated exterior facades for evaluation of wall thermal performance,” Build. Environ., vol. 67, September 2013. [Online]. Available: https://doi.org/10.1016/j.buildenv.2013.04.027

F. Olivieri, D. Redondas, L. Olivieri, and J. Neila, “Experimental characterization and implementation of an integrated autoregressive model to predict the thermal performance of vegetal façades,” Energy Build., vol. 72, April 2014. [Online]. Available: https://doi.org/10.1016/j.enbuild.2013.12.062

J. Alonso, F. Olivieri, J. Neila, and C. Bedoya, “Hygrothermal performance of vegetation on cladding and translucent façade systems,” in 27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 2011, pp. 13–15.

A. M. Omer, “Renewable building energy systems and passive human comfort solutions,” Renew. Sustain. Energy Rev., vol. 12, no. 6, August 2008. [Online]. Available: https://doi.org/10.1016/j.rser.2006.07.010

C. Nesshöver and et al., “The science, policy and practice of nature-based solutions: An interdisciplinary perspective,” Sci. Total Environ., vol. 579, February 01 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.11.106

P. Sukhdev and et al. The economics of ecosystems and biodiversity: Mainstreaming the economics of nature: A synthesis of the approach, conclusions and recommendations of TEEB. The Economics of Ecosystems and Biodiversity. Geneva, Switzerland. [Online]. Available: https://bit.ly/2Ot21Eo

D. J. Teece, “Business models, business strategy and innovation,” Long Range Plann., vol. 43, no. 2-3, April 2010. [Online]. Available: https://doi.org/10.1016/j.lrp.2009.07.003

A. Osterwalder, Y. Pigneur, and C. L. Tucci, “Clarifying business models: Origins, present, and future of the concept,” Commun. Assoc. Inf. Syst., vol. 16, 2005. [Online]. Available: https://doi.org/10.17705/1CAIS.01601

N. J. Foss and T. Saebi, “Fifteen years of research on business model innovation: How far have we come, and where should we go?” J. Manage., vol. 43, no. 1, November 2016. [Online]. Available: https://doi.org/10.1177/0149206316675927

The New Urban Agenda, Habitat III Secretariat, United Nations, 2017.

The city of Zagreb development strategy for the period leading up to 2020. City of Zagreb. Zagreb, Croatia. [Online]. Available: https://bit.ly/3fz9k9G

Paris Resilience Strategy, Mairie de Paris.

“Emissions reduction plan for our operations 2016 - 2021,” City of Melbourne, Melbourne, Australia, Tech. Rep., 2016.

C. Tapia and et al. (2015, Jul.) Análisis de vulnerabilidad ante el cambio climático en el municipio de Madrid. Tecnalia Research & Innovation. Madrid, Spain. [Online]. Available: https://bit.ly/2OpIdSy

Madrid + natural. soluciones naturales para adaptarnos al cambio climático. Medio ambiente y movilidad de Madrid. Madrid, Spain. [Online]. Available: https://bit.ly/3iZeHRP

Plan a: Plan de calidad del aire y cambio climático de la ciudad de madrid. Ayuntamiento de Madrid. Madrid, Spain. [Online]. Available: https://bit.ly/307KHKU

Sistema biofiver. Vertiarte. Accessed Sep. 2019. [Online]. Available: https://bit.ly/3j7xn1Q

HOBO MX2301A temperature/RH data logger. ONSET. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2B34d2C

Publicado

2020-07-17

Cómo citar

Oquendo-Di Cosola, V., Sánchez-Reséndiz, J. A., Olivieri, L., & Olivieri, F. (2020). Acciones para la adaptación y mitigación del cambio climático: El caso de Madrid. Revista Facultad De Ingeniería Universidad De Antioquia, (101), 84–99. https://doi.org/10.17533/udea.redin.20200795