Actions for adaptation and mitigation to climate change: Madrid case study
DOI:
https://doi.org/10.17533/udea.redin.20200795Keywords:
nature-based solutions, sustainable cities, innovationAbstract
Systemic innovation must be the driving force behind actions to transform cities to address climate change. It includes transformations of environmental, social, economic, financial, technical, regulatory, and governance nature, supporting the permanent change of cities. Nature-Based Solutions (NBS), can be part of the tools to address the challenges ahead. This research aims to define a framework of action in cities for the implementation of NBS, demonstrating the importance of quantifying its benefits in environmental and socio-economic terms, to boost public policy design and investment in this field. This work is divided into two parts. The first part, analyses some of the European measures in the field of sustainable development in cities, focusing the research on the case of Madrid. And in the second part, some case studies are presented to reflect the measures and actions taken to promote the implementation of NBS in the city of Madrid. As a result, the potential levers of change for the implementation of NBS are identified, highlighting the importance of quantifying their effects to demonstrate the potential value that can be generated within cities.
Downloads
References
Sustainable development goals. United Nations. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2Ce3kVj
(2018) Seminario UPM: Alinear la investigación con los ODS: Una oportunidad de financiación. Universidad Politécnica de Madrid. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2WjK5AO
(2011) Las ciudades y el cambio climático: Orientaciones para políticas. United Nations Human Settlements Programme. Río de Janeiro, Brasil. [Online]. Available: https://bit.ly/2Wk4WUk
“Sustainable development report 2019,” Sustainable Development Solutions Network, New York, USA, Tech. Rep., Jun. 2019.
S. Sassen. (2013, Oct. 24) Los estados se están empobreciendo demasiado. [Online]. Available: https://bit.ly/3j1CNLF
(2019) Transformation, in time EIT climate-KIC strategy 2019-2022. EIT Climate-KIC. Brussels, Belgium. [Online]. Available: https://bit.ly/2Zrii32
(2019) Call to action: Call for proposals for 2019/2020. EIT Climate-KIC. Brussels, Belgium. [Online]. Available: https://bit.ly/3gXzpQ4
M. Mazzucato. (1996, Aug.) Mission-oriented research and innovation in the european union. European Commission. Brussels, Belgium. [Online]. Available: http://www.Amdahl.com/doc/products/bsg/intra/intra/html
V. Oquendo, A. Sánchez, and L. Olivieri, “Nature based solutions for cities resilience: Opportunities for action in Madrid,” in ICSC-CITIES, 2019.
D. Schröter and et al., “Ecosystem service supply and vulnerability to global change in Europe,” Science, vol. 310, no. 5752, November 25 2005. [Online]. Available: https://doi.org/10.1126/science.1115233
“Nature-based solutions and re-naturing cities,” European Commission, Brussels, Belgium, Tech. Rep., 2015.
“Nature+ : towards nature-based solutions,” International Union for Conservation of Nature, Gland, Switzerland, Tech. Rep., 2013.
Horizon 2020. European Commission. Accessed Sep. 2019. [Online]. Available: https://bit.ly/3fufQyv
N. Mestre, “NBS,(no más) soluciones (tan) basadas en la naturaleza: metabolismos, ecosistemas y otra naturaleza envasada,” Arquitectura: Revista del Colegio Oficial de Arquitectos de Madrid, no. 375, pp. 46–51, 2018.
C. M. Raymond and et al., “An impact evaluation framework to support planning and evaluation of nature-based solutions projects,” EKLIPSE, Wallingford, UK, Tech. Rep., 2017.
S. Charoenkit and S. Yiemwattana, “Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review,” Build.
Environ., vol. 105, August 15 2016. [Online]. Available: https://doi.org/10.1016/j.buildenv.2016.05.031
L. Chen, C. Liu, R. Zou, M. Yang, and Z. Zhang, “Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment,”Environ. Pollut., vol. 208, January 2016. [Online]. Available: https://doi.org/10.1016/j.envpol.2015.09.006
A. Przybysz, A. Sæbø, H. Hanslin, and S. Gawroński, “Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time,” Sci. Total Environ., vol. 481, May 15 2014. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2014.02.072
R. Szep and et al., “The dry deposition of PM10 and PM2.5 to the vegetation and its health effect in the ciuc basin,”Rev. Chim., vol. 67, no. 4, pp. 639–644, Apr. 2016.
W. Kuttler and A. Strassburger, “Air quality measurements in urban green areas – a case study,” Atmos. Environ., vol. 33, no. 24-25, October 1999. [Online]. Available: https://doi.org/10.1016/S1352-2310(99)00151-X
N. H. Wong and et al., “Thermal evaluation of vertical greenery systems for building walls,” Build. Environ., vol. 45, no. 3, March 2010. [Online]. Available: https://doi.org/10.1016/j.buildenv.2009.08.005
L. Mariani and et al., “Climatological analysis of the mitigating effect of vegetation on the urban heat island of Milan, Italy,” Sci. Total Environ., vol. 569, November 01 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.06.111
S. Nadia, S. Noureddine, N. Hichem, and D. Djamila, “Experimental study of thermal performance and the contribution of plant-covered walls to the thermal behavior of building,” Energy Procedia, vol. 36, 2013. [Online]. Available: https://doi.org/10.1016/j.egypro.2013.07.113
A. Price, E. C. Jones, and F. Jefferson, “Vertical greenery systems as a strategy in urban heat island mitigation,” Water. Air. Soil Pollut., vol. 226, no. 8, July 2015. [Online]. Available: https://doi.org/10.1007/s11270-015-2464-9
I. Karakounos, A. Dimoudi, and S. Zoras, “The influence of bioclimatic urban redevelopment on outdoor thermal comfort,” Energy Build., vol. 158, January 01 2018. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.035
A. M. Lacasta, A. Peñaranda, and I. R. Cantalapiedra, “Green streets for noise reduction,” in Nature Based Strategies for Urban and Building Sustainability, G. Perez and K. Perini, Eds. Oxford, UK: Butterworth-Heinemann, 2018, pp. 181–190.
N. Fernández, M. Urrestarazu, and D. L. Valera, “Effects of a vertical greenery system on selected thermal and sound mitigation parameters for indoor building walls,” J. Food, Agric. Environ., vol. 10, no. 3, pp. 1025–1027, Jul. 2012.
R. Bullen and F. Fricke, “Sound propagation through vegetation,” J. Sound Vib., vol. 80, no. 1, January 08 1982. [Online]. Available: https://doi.org/10.1016/0022-460X(82)90387-X
T. Renterghem, D. Botteldooren, and K. Verheyen, “Road traffic noise shielding by vegetation belts of limited depth,” J. Sound Vib., vol. 331, no. 10, May 07 2012. [Online]. Available: https://doi.org/10.1016/j.jsv.2012.01.006
M. Hornikx and T. Renterghem, “The potential of vegetation for reducing road traffic noise at urban quiet sides,” in 9th European conference on noise control, Prague, Czech Republic, 2012, pp. 949–954.
A. Afshari, “A new model of urban cooling demand and heat island—application to vertical greenery systems (VGS),” Energy Build., vol. 157, December 15 2017. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.01.008
D. H. S. Duarte, P. Shinzato, C. Santos, and C. A. Alves, “The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate,” Urban Clim., vol. 14, December 2015. [Online]. Available: https://doi.org/10.1016/j.uclim.2015.09.006
C. Jim and H. He, “Estimating heat flux transmission of vertical greenery ecosystem,” Ecol. Eng., vol. 37, no. 8, August 2011. [Online]. Available: https://doi.org/10.1016/j.ecoleng.2011.02.005
T. A. Moya, A. Dobbelsteen, M. Ottelé, and P. M. Bluyssen, “A review of green systems within the indoor environment,” Indoor Built Environ., vol. 28, no. 3, 2019. [Online]. Available: https://doi.org/10.1177/1420326X18783042
C. Bartesaghi, P. Osmond, and A. Peters, “Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources,” Sol. Energy, vol. 166, May 15 2018. [Online]. Available: https://doi.org/10.1016/j.solener.2018.03.008
P. M. F. Wouw, E. J. M. Ros, and H. J. H. Brouwers, “Precipitation collection and evapo(transpi)ration of living wall systems: A comparative study between a panel system and a planter box system,” Build. Environ., vol. 126, December 2017. [Online]. Available: https://doi.org/10.1016/j.buildenv.2017.10.002
E. Cubi, N. F. Zibin, S. J. Thompson, and J. Bergerson, “Sustainability of rooftop technologies in cold climates: Comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels,” Journal of Industrial Ecology, vol. 20, no. 2, March 2015. [Online]. Available:
https://doi.org/10.1111/jiec.12269
Z. Azkorra and et al., “Evaluation of green walls as a passive acoustic insulation system for buildings,” Appl. Acoust., vol. 89, March 2015. [Online]. Available: https://doi.org/10.1016/j.apacoust.2014.09.010
I. Susorova, M. Angulo, P. Bahrami, and B. Stephens, “A model of vegetated exterior facades for evaluation of wall thermal performance,” Build. Environ., vol. 67, September 2013. [Online]. Available: https://doi.org/10.1016/j.buildenv.2013.04.027
F. Olivieri, D. Redondas, L. Olivieri, and J. Neila, “Experimental characterization and implementation of an integrated autoregressive model to predict the thermal performance of vegetal façades,” Energy Build., vol. 72, April 2014. [Online]. Available: https://doi.org/10.1016/j.enbuild.2013.12.062
J. Alonso, F. Olivieri, J. Neila, and C. Bedoya, “Hygrothermal performance of vegetation on cladding and translucent façade systems,” in 27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 2011, pp. 13–15.
A. M. Omer, “Renewable building energy systems and passive human comfort solutions,” Renew. Sustain. Energy Rev., vol. 12, no. 6, August 2008. [Online]. Available: https://doi.org/10.1016/j.rser.2006.07.010
C. Nesshöver and et al., “The science, policy and practice of nature-based solutions: An interdisciplinary perspective,” Sci. Total Environ., vol. 579, February 01 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.11.106
P. Sukhdev and et al. The economics of ecosystems and biodiversity: Mainstreaming the economics of nature: A synthesis of the approach, conclusions and recommendations of TEEB. The Economics of Ecosystems and Biodiversity. Geneva, Switzerland. [Online]. Available: https://bit.ly/2Ot21Eo
D. J. Teece, “Business models, business strategy and innovation,” Long Range Plann., vol. 43, no. 2-3, April 2010. [Online]. Available: https://doi.org/10.1016/j.lrp.2009.07.003
A. Osterwalder, Y. Pigneur, and C. L. Tucci, “Clarifying business models: Origins, present, and future of the concept,” Commun. Assoc. Inf. Syst., vol. 16, 2005. [Online]. Available: https://doi.org/10.17705/1CAIS.01601
N. J. Foss and T. Saebi, “Fifteen years of research on business model innovation: How far have we come, and where should we go?” J. Manage., vol. 43, no. 1, November 2016. [Online]. Available: https://doi.org/10.1177/0149206316675927
The New Urban Agenda, Habitat III Secretariat, United Nations, 2017.
The city of Zagreb development strategy for the period leading up to 2020. City of Zagreb. Zagreb, Croatia. [Online]. Available: https://bit.ly/3fz9k9G
Paris Resilience Strategy, Mairie de Paris.
“Emissions reduction plan for our operations 2016 - 2021,” City of Melbourne, Melbourne, Australia, Tech. Rep., 2016.
C. Tapia and et al. (2015, Jul.) Análisis de vulnerabilidad ante el cambio climático en el municipio de Madrid. Tecnalia Research & Innovation. Madrid, Spain. [Online]. Available: https://bit.ly/2OpIdSy
Madrid + natural. soluciones naturales para adaptarnos al cambio climático. Medio ambiente y movilidad de Madrid. Madrid, Spain. [Online]. Available: https://bit.ly/3iZeHRP
Plan a: Plan de calidad del aire y cambio climático de la ciudad de madrid. Ayuntamiento de Madrid. Madrid, Spain. [Online]. Available: https://bit.ly/307KHKU
Sistema biofiver. Vertiarte. Accessed Sep. 2019. [Online]. Available: https://bit.ly/3j7xn1Q
HOBO MX2301A temperature/RH data logger. ONSET. Accessed Sep. 2019. [Online]. Available: https://bit.ly/2B34d2C
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.