Reconocimiento de defectos en puentes de hormigón armado utilizando termografía infrarroja: estudio de caso

Autores/as

  • Joaquin Humberto Aquino-Rocha Universidade Federal de Rio de Janeiro https://orcid.org/0000-0002-3383-6379
  • Yêda Vieira Póvoas Universidade de Pernambuco
  • Pedro Igor Bezerra-Batista Universidade de Pernambuco

DOI:

https://doi.org/10.17533/udea.redin.20230521

Palabras clave:

Ensayo no destructivo, inspección de puentes, reconocimiento, gradientes térmicos

Resumen

La termografía infrarroja es una prueba no destructiva que se utiliza cada vez más en la inspección de edificios, puentes y obras civiles existentes. Sin embargo, su práctica es limitada, debido a la influencia de las condiciones ambientales en los resultados de la prueba. El presente estudio tiene como objetivo evaluar la metodología de la termografía infrarroja a través de la inspección de puentes existentes de hormigón armado en Recife, Brasil. Esta ciudad presenta condiciones ambientales diferentes a las reportadas en la literatura, una elevada temperatura ambiental y humedad relativa. El estudio comprende la inspección de cinco puentes en dos días, analizando por separado su superestructura e infraestructura. Los resultados muestran que el reconocimiento de defectos es posible a través del gradiente de temperatura entre regiones imperfectas y regiones intactas. Por lo tanto, una variación de temperatura superior a 0.3 °C permite conocer el problema. El comportamiento de los resultados es diferente según la sección de puente inspeccionada. Los defectos en la superestructura del puente se presentan como gradientes térmicos positivos. Por otro lado, las deficiencias de la infraestructura del puente se mostraron como gradientes térmicos negativos. Aunque la técnica presenta varias ventajas para la inspección, los resultados deben analizarse en detalle para evitar detecciones falsas, lo que puede comprometer el diagnóstico correcto de las estructuras del puente.

|Resumen
= 684 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 174 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Joaquin Humberto Aquino-Rocha, Universidade Federal de Rio de Janeiro

Maestría, Investigador

Yêda Vieira Póvoas, Universidade de Pernambuco

PhD, Investigador

Pedro Igor Bezerra-Batista , Universidade de Pernambuco

Magíster, Investigador

Citas

S. Hiasa, R. Birgul, and F. Necati-Catbas, “A data processing methodology for infrared thermography images of concrete bridges,” Computers & Structures, vol. 190, Oct. 01, 2017. [Online]. Available: https://doi.org/10.1016/j.compstruc.2017.05.011

A. Watase, R. Birgul, S. Hiasa, M. Matsumoto, K. Mitani, and F. Necati-Catbas, “Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation,” Construction and Building Materials, vol. 101, Dec. 30, 2015. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2015.10.156

T. D. Everett, P. Weykamp, W. R. Cox, T. S. Drda, L. Hummel, and et al., “Bridge evaluation quality assurance in europe,” U. S. Department of Transportation, Alexandria, V. A, Tech. Rep. FHWA-PL-08-016, Mar. 2008.

ABNT Associação Brasileira de Normas Técnicas, “Inspeção de pontes, viadutos e passarelas de concreto – procedimento,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Tech. Rep. ABNT NBR 9452, Sep. 2019.

S. K. U. Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, “Nondestructive test methods for concrete bridges: A review,” Construction and Building Materials, vol. 107, Mar. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2015.12.011

A. M. Alani, M. Aboutalebi, and G. Kilic, “Integrated health assessment strategy using ndt for reinforced concrete bridges,” NDT & E International, vol. 61, Oct. 17, 2013. [Online]. Available: https://doi.org/10.1016/j.ndteint.2013.10.001

T. Oh, S.-H. Kee, R. W. Arndt, J. S. Popovics, and J. Zhu, “Comparison of ndt methods for assessment of a concrete bridge deck,” Journal of Engineering Mechanics, vol. 139, no. 3, Mar. 28, 2012. [Online]. Available: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000441

R. Alfredo-Cruz, L. A. Quintero-Ortiz, C. A. Galán-Pinilla, and E. J. Espinosa-García, “Evaluación de técnicas no destructivas en elementos de concreto para puentes,” Revista Facultad de Ingeniería, vol. 24, no. 40, Aug. 04, 2015. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-11292015000300008

N. Gucunski, A. Imani, F. Romero, S. Nazarian, D. Yuan, and H. W. et al., “Nondestructive testing to identify concrete bridge deck deterioration,” SHRP 2 Strategic Highway Research Program, Washington D. C., Tech. Rep. SHRP 2 Report S2-R06A-RR-1, Apr. 2012.

S. Hiasa, R. Birgul, M. Matsumoto, and F. Necati-Catbas, “Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks,” Measurement, vol. 121, Feb. 25, 2018. [Online]. Available: https://doi.org/10.1016/j.measurement.2018.02.019

S. A. Dabous, S. Yaghi, S. Alkass, and O. Moselhi, “Concrete bridge deck condition assessment using ir thermography and ground penetrating radar technologies,” Automation in Construction, vol. 81, Apr. 14, 2017. [Online]. Available: https://doi.org/10.1016/j.autcon.2017.04.006

G. Washer, R. Fenwick, and N. Bolleni, “Effects of solar loading on infrared imaging of subsurface features in concrete,” Journal of Bridge Engineering, vol. 15, no. 4, Mar. 08, 2010. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000117

S. Hiasa, R. Birgul, and F. Necati-Catbas, “Investigation of effective utilization of infrared thermography (irt) through advanced finite element modeling,” Construction and Building Materials, vol. 150, Sep. 30, 2017. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2017.05.175

B. N. K. Raja, S. Miramini, C. Duffield, M. Sofi, P. Mendis, and L. Zhang, “The influence of ambient environmental conditions in detecting bridge concrete deck delamination using infrared thermography (irt),” The journal of the International Association for Structural Control and Monitoring, Jan. 17, 2020. [Online]. Available: https://doi.org/10.1002/stc.2506

S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, “Infrared thermography for condition monitoring – a review,” Infrared Physics & Technology, vol. 60, Mar. 24, 2013. [Online]. Available: https://doi.org/10.1016/j.infrared.2013.03.006

K. Vaghefi, T. M. Ahlborn, D. K. Harris, and C. N. Brooks, “Combined imaging technologies for concrete bridge deck condition assessment,” Journal of Performance of Constructed Facilities, vol. 29, no. 4, Apr. 20, 2013. [Online]. Available: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465

M. R. Clark, D. M. McCann, and M. C. Forde, “Application of infrared thermography to the non-destructive testing of concrete and masonry bridges,” NDT & E International, vol. 36, no. 4, Mar. 04, 2013. [Online]. Available: https://doi.org/10.1016/S0963-8695(02)00060-9

C. Maierhofer, R. Arndt, M. Rollig, C. Rieck, A. Walther, and H. S. et al., “Application of impulse-thermography for non-destructive assessment of concrete structures,” Cement and Concrete Composites, vol. 28, no. 4, Apr. 21, 2006. [Online]. Available: https://doi.org/10.1016/j.cemconcomp.2006.02.011

A. A. Sultan and G. Washer, “A pixel-by-pixel reliability analysis of infrared thermography (irt) for the detection of subsurface delamination,” NDT & E International, vol. 92, Sep. 05, 2017. [Online]. Available: https://doi.org/10.1016/j.ndteint.2017.08.009

P. Cotic, D. Kolaric, V. Bokan-Bosiljkov, V. Bosiljkov, and Z. Jaglicic, “Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography,” NDT & E International, vol. 74, May 22, 2015. [Online]. Available: https://doi.org/10.1016/j.ndteint.2015.05.003

S. Hiasa, R. Birgul, and F. Necati-Catbas, “Effect of defect size on subsurface defect detectability and defect depth estimation for concrete structures by infrared thermography,” Journal of Nondestructive Evaluation, vol. 36, no. 57, Jul. 31, 2017. [Online]. Available: https://doi.org/10.1007/s10921-017-0435-3

Q. Huy-Tran, D. Han, C. Kang, A. Haldar, and J. Huh, “Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging,” Sensors, vol. 17, no. 8, Jul. 26, 2017. [Online]. Available: https://doi.org/10.3390/s17081718

S. Pozzer, F. Dalla-Rosa, Z. M. Chamberlain-Pravia, E. Rezazadeh-Azar, and X. Maldague, “Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography,” Applied Sciences, vol. 11, no. 10, May 11, 2021. [Online]. Available: https://doi.org/10.3390/app11104323

S. Farrag, S. Yehia, and N. Qaddoumi, “Investigation of mix-variation effect on defect-detection ability using infrared thermography as a nondestructive evaluation technique,” Journal of Bridge Engineerin, vol. 21, no. 3, Sep. 25, 2015. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000779

S.-H. kee, T. Oh, J. S. Popovics, R. W. Arndt, and J. Zhu, “Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography,” Journal of Bridge Engineering, vol. 17, no. 6, Dec. 02, 2011. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000350

D. G. Aggelis, E. Z. Kordatos, D. V. Soulioti, and T. E. Matikas, “Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete,” Construction and Building Materials, vol. 24, no. 10, Apr. 21, 2010. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2010.04.014

Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography, ASTM D4788-03, 2022. [Online]. Available: https://doi.org/10.1520/D4788-03R22

J. H. Aquino-Rocha, Y. Vieira-Póvoas, and C. Firmino-Santos, “Detection of delaminations in sunlight-unexposed concrete elements of bridges using infrared thermography,” Journal of Nondestructive Evaluation, vol. 38, no. 8, Dec. 01, 2018. [Online]. Available: https://doi.org/10.1007/s10921-018-0546-5

G. Washer, “Advances in the use of thermographic imaging for the condition assessment of bridges,” Bridge Structures, vol. 8, no. 2, 2012. [Online]. Available: https://doi.org/10.3233/BRS-2012-0041

S. Hiasa, R. Birgul, and F. Necati-Catbas, “Infrared thermography for civil structural assessment: demonstrations with laboratory and field studies,” Journal of Civil Structural Health Monitoring, vol. 6, 2016. [Online]. Available: https://doi.org/10.1007/s13349-016-0180-9

S. Hiasa, F. Necati-Catbas, M. Matsumoto, and K. Mitani, “Considerations and issues in the utilization of infrared thermography for concrete bridge inspection at normal driving speeds,” Journal of Bridge Engineering, vol. 22, no. 11, Sep. 13, 2017. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001124

A. Ellenberg, A. Kontsos, F. Moon, and I. Bartoli, “Bridge deck delamination identification from unmanned aerial vehicle infrared imagery,” Automation in Construction, vol. 72, no. 2, Sep. 09, 2016. [Online]. Available: https://doi.org/10.1016/j.autcon.2016.08.024

Google earth, recife. Google. [Online]. Available: https://tinyurl.com/yw8btmhy

J. Rocha and Y. V. Póvoas, “Detection of delaminations in reinforced concrete bridges using infrared thermography,” Revista ingeniería de construcción, vol. 34, no. 1, Apr. 2019. [Online]. Available: http://dx.doi.org/10.4067/S0718-50732019000100055

User’s manual, FLIR Exx series, United States, 2014.

Desempenho térmico de edificações - Parte 2, Norma Técnica NBR 15220-2, Under Associação Brasileira de Normas Técnicas, Brazil, RJ, 2005.

N. Muller-Pintan, R. Alves-Berenguer, and A. J. da Costa e Silva, “Pathological manifestations and the study of corrosion present on bridges of the city of recife,” Electronic Journal of Geotechnical Engineering, vol. 24, no. 24, pp. 11 893–11 907, Jan. 2015.

Publicado

2023-05-15

Cómo citar

Aquino-Rocha, J. H., Póvoas, Y. V., & Bezerra-Batista , P. I. (2023). Reconocimiento de defectos en puentes de hormigón armado utilizando termografía infrarroja: estudio de caso. Revista Facultad De Ingeniería Universidad De Antioquia, (110), 99–109. https://doi.org/10.17533/udea.redin.20230521