Flaw recognition in reinforced concrete bridges using infrared thermography: A case study
DOI:
https://doi.org/10.17533/udea.redin.20230521Keywords:
Non-destructive tests, bridge Inspection, recognition, thermal gradientsAbstract
Infrared thermography is a non-destructive test that is increasingly used in the inspection of existing buildings, bridges, and civil works. However, its practice is limited due to the influence of environmental conditions on the results of the test. The present study aims to evaluate the methodology of the test through the inspection of existing reinforced concrete bridges in Recife, Brazil. This city presents different environmental conditions from those reported in the literature, a high ambient temperature and relative humidity. The study comprises the inspection of five bridges in two days, analyzing their superstructure and infrastructure separately. The results show that flaw recognition is possible through the temperature gradient between imperfect and intact regions. Thus, variation in temperature greater than 0.3 °C allows awareness of the problem. The results behavior is different based on the bridge section inspected. The defects in the bridge superstructure are presented as positive thermal gradients. On the other hand, bridge infrastructure’s deficiencies are shown as negative thermal gradients. Although the technique presents several advantages for the inspection, the results must be analyzed in detail to avoid false detections, which may compromise the correct diagnosis of the bridge structures.
Downloads
References
S. Hiasa, R. Birgul, and F. Necati-Catbas, “A data processing methodology for infrared thermography images of concrete bridges,” Computers & Structures, vol. 190, Oct. 01, 2017. [Online]. Available: https://doi.org/10.1016/j.compstruc.2017.05.011
A. Watase, R. Birgul, S. Hiasa, M. Matsumoto, K. Mitani, and F. Necati-Catbas, “Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation,” Construction and Building Materials, vol. 101, Dec. 30, 2015. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2015.10.156
T. D. Everett, P. Weykamp, W. R. Cox, T. S. Drda, L. Hummel, and et al., “Bridge evaluation quality assurance in europe,” U. S. Department of Transportation, Alexandria, V. A, Tech. Rep. FHWA-PL-08-016, Mar. 2008.
ABNT Associação Brasileira de Normas Técnicas, “Inspeção de pontes, viadutos e passarelas de concreto – procedimento,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Tech. Rep. ABNT NBR 9452, Sep. 2019.
S. K. U. Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, “Nondestructive test methods for concrete bridges: A review,” Construction and Building Materials, vol. 107, Mar. 15, 2016. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2015.12.011
A. M. Alani, M. Aboutalebi, and G. Kilic, “Integrated health assessment strategy using ndt for reinforced concrete bridges,” NDT & E International, vol. 61, Oct. 17, 2013. [Online]. Available: https://doi.org/10.1016/j.ndteint.2013.10.001
T. Oh, S.-H. Kee, R. W. Arndt, J. S. Popovics, and J. Zhu, “Comparison of ndt methods for assessment of a concrete bridge deck,” Journal of Engineering Mechanics, vol. 139, no. 3, Mar. 28, 2012. [Online]. Available: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000441
R. Alfredo-Cruz, L. A. Quintero-Ortiz, C. A. Galán-Pinilla, and E. J. Espinosa-García, “Evaluación de técnicas no destructivas en elementos de concreto para puentes,” Revista Facultad de Ingeniería, vol. 24, no. 40, Aug. 04, 2015. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-11292015000300008
N. Gucunski, A. Imani, F. Romero, S. Nazarian, D. Yuan, and H. W. et al., “Nondestructive testing to identify concrete bridge deck deterioration,” SHRP 2 Strategic Highway Research Program, Washington D. C., Tech. Rep. SHRP 2 Report S2-R06A-RR-1, Apr. 2012.
S. Hiasa, R. Birgul, M. Matsumoto, and F. Necati-Catbas, “Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks,” Measurement, vol. 121, Feb. 25, 2018. [Online]. Available: https://doi.org/10.1016/j.measurement.2018.02.019
S. A. Dabous, S. Yaghi, S. Alkass, and O. Moselhi, “Concrete bridge deck condition assessment using ir thermography and ground penetrating radar technologies,” Automation in Construction, vol. 81, Apr. 14, 2017. [Online]. Available: https://doi.org/10.1016/j.autcon.2017.04.006
G. Washer, R. Fenwick, and N. Bolleni, “Effects of solar loading on infrared imaging of subsurface features in concrete,” Journal of Bridge Engineering, vol. 15, no. 4, Mar. 08, 2010. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000117
S. Hiasa, R. Birgul, and F. Necati-Catbas, “Investigation of effective utilization of infrared thermography (irt) through advanced finite element modeling,” Construction and Building Materials, vol. 150, Sep. 30, 2017. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2017.05.175
B. N. K. Raja, S. Miramini, C. Duffield, M. Sofi, P. Mendis, and L. Zhang, “The influence of ambient environmental conditions in detecting bridge concrete deck delamination using infrared thermography (irt),” The journal of the International Association for Structural Control and Monitoring, Jan. 17, 2020. [Online]. Available: https://doi.org/10.1002/stc.2506
S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, and T. Jayakumar, “Infrared thermography for condition monitoring – a review,” Infrared Physics & Technology, vol. 60, Mar. 24, 2013. [Online]. Available: https://doi.org/10.1016/j.infrared.2013.03.006
K. Vaghefi, T. M. Ahlborn, D. K. Harris, and C. N. Brooks, “Combined imaging technologies for concrete bridge deck condition assessment,” Journal of Performance of Constructed Facilities, vol. 29, no. 4, Apr. 20, 2013. [Online]. Available: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465
M. R. Clark, D. M. McCann, and M. C. Forde, “Application of infrared thermography to the non-destructive testing of concrete and masonry bridges,” NDT & E International, vol. 36, no. 4, Mar. 04, 2013. [Online]. Available: https://doi.org/10.1016/S0963-8695(02)00060-9
C. Maierhofer, R. Arndt, M. Rollig, C. Rieck, A. Walther, and H. S. et al., “Application of impulse-thermography for non-destructive assessment of concrete structures,” Cement and Concrete Composites, vol. 28, no. 4, Apr. 21, 2006. [Online]. Available: https://doi.org/10.1016/j.cemconcomp.2006.02.011
A. A. Sultan and G. Washer, “A pixel-by-pixel reliability analysis of infrared thermography (irt) for the detection of subsurface delamination,” NDT & E International, vol. 92, Sep. 05, 2017. [Online]. Available: https://doi.org/10.1016/j.ndteint.2017.08.009
P. Cotic, D. Kolaric, V. Bokan-Bosiljkov, V. Bosiljkov, and Z. Jaglicic, “Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography,” NDT & E International, vol. 74, May 22, 2015. [Online]. Available: https://doi.org/10.1016/j.ndteint.2015.05.003
S. Hiasa, R. Birgul, and F. Necati-Catbas, “Effect of defect size on subsurface defect detectability and defect depth estimation for concrete structures by infrared thermography,” Journal of Nondestructive Evaluation, vol. 36, no. 57, Jul. 31, 2017. [Online]. Available: https://doi.org/10.1007/s10921-017-0435-3
Q. Huy-Tran, D. Han, C. Kang, A. Haldar, and J. Huh, “Effects of ambient temperature and relative humidity on subsurface defect detection in concrete structures by active thermal imaging,” Sensors, vol. 17, no. 8, Jul. 26, 2017. [Online]. Available: https://doi.org/10.3390/s17081718
S. Pozzer, F. Dalla-Rosa, Z. M. Chamberlain-Pravia, E. Rezazadeh-Azar, and X. Maldague, “Long-term numerical analysis of subsurface delamination detection in concrete slabs via infrared thermography,” Applied Sciences, vol. 11, no. 10, May 11, 2021. [Online]. Available: https://doi.org/10.3390/app11104323
S. Farrag, S. Yehia, and N. Qaddoumi, “Investigation of mix-variation effect on defect-detection ability using infrared thermography as a nondestructive evaluation technique,” Journal of Bridge Engineerin, vol. 21, no. 3, Sep. 25, 2015. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000779
S.-H. kee, T. Oh, J. S. Popovics, R. W. Arndt, and J. Zhu, “Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography,” Journal of Bridge Engineering, vol. 17, no. 6, Dec. 02, 2011. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000350
D. G. Aggelis, E. Z. Kordatos, D. V. Soulioti, and T. E. Matikas, “Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete,” Construction and Building Materials, vol. 24, no. 10, Apr. 21, 2010. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2010.04.014
Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography, ASTM D4788-03, 2022. [Online]. Available: https://doi.org/10.1520/D4788-03R22
J. H. Aquino-Rocha, Y. Vieira-Póvoas, and C. Firmino-Santos, “Detection of delaminations in sunlight-unexposed concrete elements of bridges using infrared thermography,” Journal of Nondestructive Evaluation, vol. 38, no. 8, Dec. 01, 2018. [Online]. Available: https://doi.org/10.1007/s10921-018-0546-5
G. Washer, “Advances in the use of thermographic imaging for the condition assessment of bridges,” Bridge Structures, vol. 8, no. 2, 2012. [Online]. Available: https://doi.org/10.3233/BRS-2012-0041
S. Hiasa, R. Birgul, and F. Necati-Catbas, “Infrared thermography for civil structural assessment: demonstrations with laboratory and field studies,” Journal of Civil Structural Health Monitoring, vol. 6, 2016. [Online]. Available: https://doi.org/10.1007/s13349-016-0180-9
S. Hiasa, F. Necati-Catbas, M. Matsumoto, and K. Mitani, “Considerations and issues in the utilization of infrared thermography for concrete bridge inspection at normal driving speeds,” Journal of Bridge Engineering, vol. 22, no. 11, Sep. 13, 2017. [Online]. Available: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001124
A. Ellenberg, A. Kontsos, F. Moon, and I. Bartoli, “Bridge deck delamination identification from unmanned aerial vehicle infrared imagery,” Automation in Construction, vol. 72, no. 2, Sep. 09, 2016. [Online]. Available: https://doi.org/10.1016/j.autcon.2016.08.024
Google earth, recife. Google. [Online]. Available: https://tinyurl.com/yw8btmhy
J. Rocha and Y. V. Póvoas, “Detection of delaminations in reinforced concrete bridges using infrared thermography,” Revista ingeniería de construcción, vol. 34, no. 1, Apr. 2019. [Online]. Available: http://dx.doi.org/10.4067/S0718-50732019000100055
User’s manual, FLIR Exx series, United States, 2014.
Desempenho térmico de edificações - Parte 2, Norma Técnica NBR 15220-2, Under Associação Brasileira de Normas Técnicas, Brazil, RJ, 2005.
N. Muller-Pintan, R. Alves-Berenguer, and A. J. da Costa e Silva, “Pathological manifestations and the study of corrosion present on bridges of the city of recife,” Electronic Journal of Geotechnical Engineering, vol. 24, no. 24, pp. 11 893–11 907, Jan. 2015.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Facultad de Ingeniería Universidad de Antioquia
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.