Control inmune por modo deslizante para seguimiento y evasión en robots móviles

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20250882

Palabras clave:

Robótica móvil, Diseño de sistemas de control multirobot, control automático robusto, Seguimiento de trayectoria, Sistemas inmunitarios artificiales

Resumen

Este art´ıculo propone un controlador cinematico ´ de modo deslizante difuso inmune integrado
con un controlador dinamico ´ derivado proporcional para el problema de seguimiento de trayectoria para un
robot movil ´ con ruedas de traccion´ diferencial no holonomico ´ sujeto a incertidumbres y perturbaciones y su
extension´ al control de la formacion´ l´ıder-seguidor por parte de multiples ´ robots que utilizan la estrategia
separacion- ´ bearing. Para hacer frente a los inconvenientes de un control tradicional de modo deslizante de
primer orden, como el fenomeno ´ del parloteo y la necesidad de un conocimiento a priori de los l´ımites de
las incertidumbres y las perturbaciones, inspirado en un mecanismo de regulacion´ de la respuesta inmune
humoral, Se deriva un sistema difuso para establecer el efecto de la reaccion´ de control para un diseno˜
de sistema inmunologico ´ artificial para ajustar en l´ınea las ganancias de la porcion´ de robustez del control
de forma adaptativa. Ademas, ´ este art´ıculo presenta una estrategia de evitacion´ de obstaculos ´ basada en
un enfoque reactivo, considerando tambien´ un radio de evitacion´ variable, para navegar en el tiempo de
ejecucion´ al robot l´ıder alrededor de propuestas estaticas ´ durante el seguimiento de la trayectoria. Los
resultados experimentales y de simulacion´ demuestran la eficacia del controlador propuesto para evitar
obstaculos, ´ y la teor´ıa de Lyapunov demuestra la estabilidad del sistema de control de circuito cerrado.

|Resumen
= 42 veces | PDF (ENGLISH)
= 12 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Willy John Nakamura Goto, Universidade Estadual de Maringá

Graduado en Ingeniería Eléctrica por la Universidad Estatal de Maringá (Universidade Estadual de Maringá - UEM). Magíster en Ciencias de la Computación por el Departamento de Informática, Programa de Posgrado en Ciencias de la Computación, Universidad Estatal de Maringá (UEM), Maringá, Paraná, Brasil.

Douglas Wildgrube Bertol, Universidade do Estado de Santa Catarina

Profesor, Departamento de Ingeniería Eléctrica

Nardênio Almeida Martins, Universidade Estadual de Maringá

Profesor asociado, Departamento de informática

Citas

X. V. Wang and L. Wang, “A literature survey of the robotic technologies during the covid-19 pandemic,” Journal of Manufacturing Systems, vol. 60, pp. 823–836, 2021.

Iswanto, A. Ma’arif, N. Raharja, G. Supangkat, F. Arofiati, R. Sekhar, and D. Rijalusalam, “Pid-based with odometry for trajectory tracking control on four-wheel omnidirectional covid-19 aromatherapy robot,” Emerging Science Journal, vol. 5, pp. 157–181, 11 2021.

S. Moorthy and Y. H. Joo, “Formation control and tracking of mobile robots using distributed estimators and a biologically inspired approach,” Journal of Electrical Engineering & Technology, vol. 18, 08 2022.

G. Oriolo, Wheeled Robots. London: Springer London, 2020, pp. 1–8.

X. Gao, L. Yan, and C. Gerada, “Modeling and analysis in trajectory tracking control for wheeled mobile robots with wheel skidding and slipping: Disturbance rejection perspective,” Actuators, vol. 10, p. 222, 09 2021.

J. Minguez, F. Lamiraux, and J.-P. Laumond, Motion Planning and Obstacle Avoidance, 01 2016, pp. 827–852.

J. Li, J. Sun, and G. Chen, “A multi-switching tracking control scheme for autonomous mobile robot in unknown obstacle environments,” Electronics, vol. 9, no. 1, pp. 1–14, 2020.

T. Yang, N. Sun, and Y. Fang, “Adaptive fuzzy control for a class of mimo underactuated systems with plant uncertainties and actuator deadzones: Design and experiments,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8213–8226, 2022.

B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd ed. Springer Publishing Company, Incorporated, 2016.

T. Dierks and S. Jagannathan, “Asymptotic adaptive neural network tracking control of nonholonomic mobile robot

formations,” Journal of Intelligent and Robotic Systems, vol. 56, no. 1, pp. 153–176, 2009.

N. A. Martins and D. W. Bertol, Wheeled Mobile Robot Control: Theory, Simulation, and Experimentation, 1st ed. Springer Nature Switzerland AG, 2022.

Y. Liu and R. Bucknall, “A survey of formation control and motion planning of multiple unmanned vehicles,” Robotica, vol. 36, no. 7, pp. 1019–1047, 03 2018.

N. Hassan and A. Saleem, “Neural network-based adaptive controller for trajectory tracking of wheeled mobile robots,” IEEE Access, vol. 10, pp. 13 582–13 597, 2022.

W. Liu, X. Wang, and S. Li, “Formation control for leader-follower wheeled mobile robots based on embedded

control technique,” IEEE Transactions on Control Systems Technology, vol. 31, no. 1, pp. 265–280, 2023.

K. Sun, Z. Xu, S. Li, X. Li, and X. Zhou, “Robust trajectory tracking control of wheeled mobile robots and comparison

with existing methods,” in 2022 41st Chinese Control Conference (CCC), 2022, pp. 2749–2754.

V. Utkin, A. Poznyak, Y. Orlov, and A. Polyakov, Road Map for Sliding Mode Control Design, 1st ed. Springer Cham, 2020.

A. Mehta and B. Bandyopadhyay, Emerging Trends in Sliding Mode Control - Theory and Application, 09 2020.

V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical Systems, 2nd ed. CRC Press, 01 2017.

P.-Z. Lin, C. Hsu, T.-T. Lee, and C.-H. Wang, “Robust fuzzy-neural sliding-mode controller design via network

structure adaptation,” Control Theory & Applications, IET, vol. 2, pp. 1054 – 1065, 01 2009.

X. Yu, F. Yang, Y. Huang, and H. Nan, “Fuzzy immune sliding mode control based hydro turbine governor,” in Third

International Conference on Natural Computation (ICNC 2007), vol. 1, 2007, pp. 171–176.

——, “Adaptive fuzzy immune sliding mode control for a class of uncertain nonlinear systems,” in Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), vol. 2, 2007, pp. 546–550.

X. Yu, J. Tian, Y. Huang, and H. Nan, “Adaptive double immune sliding mode control for a class of uncertain nonlinear systems,” in 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, pp. 1199–1203.

W. Lin, H.-K. Chiang, and Y. Chung, “The speed control of immune-fuzzy sliding mode controller for a synchronous

reluctance motor,” Applied Mechanics and Materials, vol. 300-301, pp. 1490–1493, 02 2013.

C. Sun, G. Guofang, and H. Yang, “Sliding mode control with adaptive fuzzy immune feedback reaching law,” International Journal of Control, Automation and Systems, vol. 18, 08 2019.

Y. Zheng, J. Zheng, K. Shao, H. Zhao, Z. Man, and Z. Sun, “Adaptive fuzzy sliding mode control of uncertain nonholonomic wheeled mobile robot with external disturbance and actuator saturation,” Information Sciences, vol.

, p. 120303, 2024.

B. Chai, K. Zhang, M. Tan, and J. Wang, “An optimal robust trajectory tracking control strategy for the wheeled mobile robot,” International Journal of Control, Automation and Systems, vol. 22, pp. 1050—-1065, 01 2024.

M. Sani, B. Robu, and A. Hably, “Dynamic obstacles avoidance using nonlinear model predictive control,” in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Oct 2021, pp. 1–6.

Y. Wang, X. Li, J. Zhang, S. Li, Z. Xu, and X. Zhou, “Review of wheeled mobile robot collision avoidance under

unknown environment,” Science Progress, vol. 104, no. 3, p. 00368504211037771, 2021.

M. Mosayebi and P. Mallahi Kolahi, “Time optimal trajectory generation with obstacle avoidance by using optimal control theory for a wheeled mobile robot,” Gazi University Journal of Science, vol. 36, no. 1, p. 430–439, 2023.

J. Zhang, D. Wei, R. Gao, and Z. Xia, “A trajectory tracking and obstacle avoidance approach for nonholonomic mobile robots based on model predictive control,” in 2020 IEEE 16th International Conference on Control & Automation (ICCA), 2020, pp. 1038–1043.

H.-Y. Lin, S.-H. Tsai, and K.-Y. Chen, “Design and implementation of the trajectory tracking and dynamic

obstacle avoidance of wheeled mobile robot based on t-s fuzzy model,” International Journal of Fuzzy Systems, vol. 25, no. 6, pp. 2423–2438, 2023.

A. Rosales, G. Scaglia, V. Mut, and F. Sciascio, “Trajectory tracking of mobile robots in dynamic environments: a linear algebra approach,” Robotica, vol. 27, no. 7, pp. 981–997, 12 2009.

S. Mastellone, D. Stipanovic, C. Graunke, K. Intlekofer, and M. Spong, “Formation control and collision avoidance

for multi-agent non-holonomic systems: Theory and experiments,” I. J. Robotic Res., vol. 27, pp. 107–126, 01 2008.

M. Begnini, D. W. Bertol, and N. A. Martins, “A robust adaptive fuzzy variable structure tracking control for the

wheeled mobile robot: Simulation and experimental results,” Control Engineering Practice, vol. 64, pp. 27–43, 2017.

E. Elyoussef, N. Martins, D. Bertol, E. Pieri, and U. Moreno, “Simulation results and practical implementation of a

pd-super-twisting second order sliding mode tracking control for a differential wheeled mobile robot,” International Journal of Computer Applications in Technology, vol. 63, p. 213, 01 2020.

W. J. N. Goto and N. A. Martins, “Leader-follower formation tracking for differential-drive wheeled mobile robots with uncertainties and disturbances based on immune fuzzy quasi-sliding mode control,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 2, p. 91, Jan 2024. [Online]. Available: https://doi.org/10.1007/s40430-023-04650-8

W. J. N. Goto, D. W. Bertol, and N. A. Martins, “Formation and trajectory tracking of mobile robots with uncertainties and disturbances using an adaptive immune fuzzy quasi-sliding mode control,” Journal of Control, Automation and Electrical Systems, vol. 35, no. 3, pp. 440–460, Jun 2024. [Online]. Available: https://doi.org/10.1007/s40313-024-01089-7

D. Dasgupta, “Advances in artificial immune systems,” IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 40–49, 2006.

A. Dai, X. Zhou, and X. Liu, “Design and simulation of a genetically optimized fuzzy immune pid controller for a novel grain dryer,” IEEE Access, vol. 5, pp. 14 981–14 990, 2017.

R. Bouchebbat and S. Gherbi, “Design and application of fuzzy immune pid adaptive control based on particle

swarm optimization in thermal power plants,” in 2017 6th International Conference on Systems and Control (ICSC), 2017, pp. 33–38.

P. Chu, Y. Yu, D. Dong, H. Lin, and J. Yuan, “Nsga-ii-based parameter tuning method and gm(1,1)-based development of fuzzy immune pid controller for automatic train operation system,” Mathematical Problems in Engineering, vol. 2020, pp. 1–20, 2020.

C.-H. Wang and K. Hor, “From fuzzy center average defuzzifier (cad) to fuzzy lookup table controller (fltc) with an

efficient heaviside search algorithm (hsa),” Neural Computing and Applications, vol. 31, no. 9, pp. 5135–5145, 2019.

H. Suwoyo, Y. Tian, and M. Hajar, “Enhancing the performance of the wall-following robot based on flc-ga,”

SINERGI, vol. 24, p. 141, 04 2020.

M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 2nd ed. John Wiley & Sons, Inc., 2020.

A. Benzerrouk, L. Adouane, and P. Martinet, “Stable navigation in formation for a multi-robot system based on

a constrained virtual structure,” Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1806–1815, 2014.

M. Mancini, N. Bloise, E. Capello, and E. Punta, “Sliding mode control techniques and artificial potential field for dynamic collision avoidance in rendezvous maneuvers,” IEEE Control Systems Letters, vol. 4, no. 2, pp. 313–318, 2020.

M. Gu and Y. Huang, “Dynamic obstacle avoidance of mobile robot based on adaptive velocity obstacle,” in 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2021, pp. 776–781.

A. Ferrara and M. Rubagotti, “A dynamic obstacle avoidance strategy for a mobile robot based on sliding mode control,” in 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), 2009, pp. 1535–1540.

A. Nikranjbar, M. Haidari, and A. A. Atai, “Adaptive sliding mode tracking control of mobile robot in dynamic

environment using artificial potential fields,” Journal of Computer and Robotics, vol. 11, no. 1, pp. 1–14, 2018.

A. Sadollah, Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System? Rijeka: IntechOpen, 2018, ch. 1.

F. Freire, N. Martins, and F. Splendor, “A simple optimization method for tuning the gains of pid controllers for the autopilot of cessna 182 aircraft using model-in-the-loop platform,” Journal of Control, Automation and Electrical Systems, vol. 29, no. 4, pp. 441–450, 2018.

K. Erbatur and B. Calli, “Fuzzy boundary layer tuning for sliding mode systems as applied to the control of a direct drive robot,” Soft Computing, vol. 13, pp. 1099–1111, 06 2009.

Descargas

Publicado

2025-09-15

Cómo citar

Goto, W. J. N., Bertol, D. W., & Martins, N. A. (2025). Control inmune por modo deslizante para seguimiento y evasión en robots móviles. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250882

Número

Sección

Artículo de investigación