Membranas poliméricas de PVDF y PS para adsorción de iones de cobre en el agua
DOI:
https://doi.org/10.17533/udea.redin.20250573Palabras clave:
Nanotecnología, fibras, magnetismo, medio ambienteResumen
Un problema de interés mundial es la contaminación del agua con metales pesados, porque afecta la salud humana y los ecosistemas acuáticos. Las membranas de adsorción de iones metálicos se han convertido en una buena alternativa de descontaminación, por tal razón, en este estudio, se presentan resultados de la evaluación fisicoquímica de una membrana polimérica magnética para adsorción de iones de cobre Cu 2+, elaborada con la técnica de electrohilado. Esta membrana está constituida por una matriz de polifluoruro de vinilideno (PVDF) y poliestireno (PS) con incorporación de nanopartículas (NPs) de magnetita (Fe3O4) funcionalizadas con el ácido etilendiaminotetraacético (EDTA). La membrana polimérica se caracterizó morfológicamente a través del Microscopio Electrónico de Barrido por sus siglas en inglés (SEM: Scanning Electron Microscopy) y se identificaron diámetros de fibras alrededor de las 3 µm, la funcionalización con el agente quelante EDTA se demostró con el análisis espectroscópico por Espectroscopia Infraroja por Transformada de Fourier por sus siglas en inglés (FTIR: Fourier-Transform Infrared Spectroscopy). La isoterma de Langmuir sugiere que la máxima capacidad de adsorción de la membrana polimérica de PVDF/PS@Fe3O4-EDTA fue de 25.1 mg g-1 y el estudio magnético mostró un comportamiento superparamagnético y ferromagnético. El material reveló, capacidad de adsorción de iones de cobre debido a los sitios funcionales y la presencia del material magnético nanoparticulado.
Descargas
Citas
H. Chen, J. Lin, N. Zhang, L. Chen, S. Zhong, Y. Wang, and et al., “Preparation of mgal-edta-ldh based electrospun nanofiber membrane and its adsorption properties of copper(ii) from wastewater,” Journal of Hazardous Materials, vol. 345, Mar. 2018. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2017.11.002
E. Lopez, , M. Gómez, I. Becar, P. Zapata, J. Pizarra, M. Navlani-García, and et al., “Removal of mo(vi), pb(ii), and cu(ii) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers,” International Journal of Biological Macromolecules, vol. 269, no. Part 2, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132160
H. Yang, P. Zhang, Q. Zheng, G. Nie, A. Hayat, M. A. Bajaber, and et al., “Synergistically active fe3o4 magnetic and edta modified cellulose cotton fabric using chemical method and their effective pollutants removal ability from wastewater,” International Journal of Biological Macromolecules, vol. 274, no. Part 1, Aug. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132996
Z. Jiang, L. D. Tijing, A. Amarjargal, C. Hee-Park, K.-J. An, H. K. Shon, and C. S. Kim, “Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning,” Composites Part B: Engineering, vol. 77, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesb.2015.03.067
A. Thakur, A. Kumar, and A. Singh, “Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus,” Carbon, vol. 217, Jan. 25, 2024. [Online]. Available: https://doi.org/10.1016/j.carbon.2023.118621
X. Xu, M. Zhang, H. Lv, Y. Zhou, Y. Yang, and D. G. Yu, “Electrospun polyacrylonitrile-based lace nanostructures and their cu(ii) adsorption,” Separation and Purification Technology, vol. 288, May. 01, 2022. [Online]. Available: https://doi.org/10.1016/j.seppur.2022.120643
W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, 2006. [Online]. Available: https://doi.org/10.1088/0957-4484/17/14/R01
V. Mohanapriya, R. Sakthivel, N. D. K. Pham, C. K. Cheng, H. S. Le, and T. M. H. Dong, “Nanotechnology—a ray of hope for heavy metals removal,” Chemosphere, vol. 311, no. Part 1, Jan. 2023. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.136989
O. Hakami, Y. Zhang, and C. J. Banks, “Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of hg from water,” Water Research, vol. 46, no. 12, Aug. 2012. [Online]. Available: https://doi.org/10.1016/j.watres.2012.04.032
M. Shahrashoub and S. Bakhtiari, “The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies,” Microporous and Mesoporous Materials, vol. 311, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.micromeso.2020.110692
S. L. Iconaru, R. Guégan, C. L. Popa, M. Motelica-Heino, C. S. Ciobanu, and D. Predoi, “Magnetite (fe3o4) nanoparticles as adsorbents for as and cu removal,” Applied Clay Science, vol. 134, no. Part 2, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.clay.2016.08.019
S. Chen and F. Xie, “Selective adsorption of copper (ii) ions in mixed solution by fe3O4 − mnO2-edta magnetic nanoparticles,” Applied Surface Science, vol. 507, Mar. 2020. [Online]. Available: https://doi.org/10.1016/j.apsusc.2019.145090
Y. Liu, R. Fu, Y. Sun, X. Zhou, S. A. Baig, and X. Xu, “Multifunctional nanocomposites fe3o4@sio2-edta for pb(ii) and cu(ii) removal from aqueous solutions,” Applied Surface Science, vol. 369, Apr. 30, 2016. [Online]. Available: https://doi.org/10.1016/j.apsusc.2016.02.043
A. G. Magdalena, I. M. B. Silva, R. F. C. Marques, A. R. F. Pipi, P. N. Lisboa-Filho, and M. Jafelicci, “Edta-functionalized fe3o4 nanoparticles,” Journal of Physics and Chemistry of Solids, vol. 113, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.jpcs.2017.10.002
M. E. B. Pineda and A. M. G. Rodríguez, “Metales pesados (cd, cr y hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación,” Revista I3+, Investigación, Innovación, Ingeniería, vol. 2, no. 2, 2015. [Online]. Available: https://doi.org/10.24267/23462329.113
Y. G. Wibowo, D. Anwar, H. Safitri, I. Surya, S. Sudibyo, A. Tawfiequrrahman-Yuliansyah, and et al., “Functionalized magnetite-biochar with live and dead bacteria for adsorption-biosorption of highly toxic metals: Cd, hg, and pb,” Next Materials, vol. 6, Jan. 2025. [Online]. Available: https://doi.org/10.1016/j.nxmate.2025.100487
L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination, vol. 308, Jan. 02, 2013. [Online]. Available: https://doi.org/10.1016/j.desal.2010.11.033
A. P. Venugopal, O. Cespedes, and S. J. Russell, “Controlling dielectric and magnetic properties of pvdf/magnetite nanocomposite fibre webs,” International Journal of Polymer Science, vol. 2014, no. 1, Apr. 27, 2014. [Online]. Available: https://doi.org/10.1155/2014/102946
J. A. González-Sánchez, “Study of nanofibers formed by magnetic field assisted electrospinning using solutions containing pvdf, dmf, acetone and fe3o4 nanoparticles,” PhD. thesis, Universidad de Puerto Rico, Puerto Rico, 2015.
M. T. Rahul, S. K. Chacko, B. Raneesh, A. P. K, P. M. G. Nambissan, N. Kalarikkal, and et al., “al3fe5o12 nanoparticles loaded electrospun pvdf fibres: An inorganic-organic material with multifunctional traits,” Materials Chemistry and Physics, vol. 282, Apr. 15, 2022. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2022.125977
F. Mokhtari, A. Samadi, A. O. Rashed, X. Li, J. M. Razal, L. Kong, and et al., “Recent progress in electrospun polyvinylidene fluoride (pvdf)-based nanofibers for sustainable energy and environmental applications,” Progress in Materials Science, vol. 148, Feb. 2025. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2024.101376
M. I. Martín, F. A. López-Gómez, and F. J. Alguacil, “Kinetic study of the removal of cu (ii) from aqueous solutions by rolling mill scale,” Revista de Metalurgia, vol. 41, no. 4, 2005. [Online]. Available: https://doi.org/10.3989/revmetalm.2005.v41.i4.217
Y. Wang, X. Wang, Y. Ding, Z. Zhou, C. Hao, and S. Zhou, “Novel sodium lignosulphonate assisted synthesis of well dispersed fe3o4 microspheres for efficient adsorption of copper (ii),” Powder Technoly, vol. 325, Feb. 01, 2018. [Online]. Available: https://doi.org/10.1016/j.powtec.2017.11.055
H. Moridi, M. Talebi, B. Jafarnezhad, S. E. Mousavi, and S. Abbasizadeh, “The role of chitosan grafted copolymer/zeolite schiff base nanofiber in adsorption of copper and zinc cations from aqueous media,” International Journal of Biological Macromolecules, vol. 278, no. Part 3, Oct. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.135003
S. Wang, Z. Sun, E. Yan, J. Yuan, Y. Gao, Y. Bai, and et al., “Magnetic composite nanofibers fabricated by electrospinning of fe3o4/gelatin aqueous solutions,” Materials Science and Engineering: B, vol. 190, Dec. 2014. [Online]. Available: https://doi.org/10.1016/j.mseb.2014.10.001
H. Yang, H. Li, W. H. Shih, Y. Yamashita, and F. Ko, “Multifunctional nanoparticles reinforced nanofibers by electrospinning,” in 16th International Conference on Composite Materials, 2007. [Online]. Available: https://www.academia.edu/download/81265281/FrAM1-05ge_yangh224650p.pdf
T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean Journal of Chemical Engineering, vol. 29, Oct. 19, 2012. [Online]. Available: https://doi.org/10.1007/s11814-011-0167-5
M. Bayat, H. Yang, and F. Ko, “Electromagnetic properties of electrospun fe3o4/carbon composite nanofibers,” Polymer, vol. 52, no. 7, Mar. 23 2011. [Online]. Available: https://doi.org/10.1016/j.polymer.2011.01.057
S. Si, C. Li, X. Wang, D. Yu, Q. Peng, and Y. Li, “Magnetic monodisperse fe3o4 nanoparticles,” Crystal Growth & Design, vol. 5, no. 2, Jan. 07, 2005. [Online]. Available: https://doi.org/10.1021/cg0497905
Y. Liu, M. Chen, and H. Yongmei, “Study on the adsorption of cu(ii) by edta functionalized fe3o4 magnetic nano-particles,” Chemical Engineering Journal, vol. 218, Feb. 15 2013. [Online]. Available: https://doi.org/10.1016/j.cej.2012.12.027
M. Hezarjaribi, G. H. Bakeri, M. Sillanpää, M. J. Chaichi, and S. Akbari, “Novel adsorptive membrane through embedding thiol-functionalized hydrous manganese oxide into pvc electrospun nanofiber for dynamic removal of cu(ii) and ni(ii) ions from aqueous solution,” Journal of Water Process Engineering, vol. 37, Oct. 2020. [Online]. Available: https://doi.org/10.1016/j.jwpe.2020.101401
T. Akbarpour, A. Khazaei, M. Mohammadi, and N. Sarmasti, “fe3o4 nanoparticles decorated with a modified carbon quantum dot shell: Synthesis, characterization and its evaluation as an efficient adsorbent for cu(ii) and zn(ii) ions adsorption,” Polycyclic Aromatic Compounds, vol. 45, no. 7, 2025. [Online]. Available: https://doi.org/10.1080/10406638.2025.2453527
S. Sulaiman, R. Syahidah-Azis, I. Ismail, A. H. Shaari, H. C. man, N. A. A. Zari, and et al., “Structural, morphological, magnetic and adsorption properties of fe3o4 for copper removal from aqueous solution,” Desalination and Water Treatment, vol. 215, Mar. 2021. [Online]. Available: https://doi.org/10.5004/dwt.2021.26769
M. Bae, H. Lee, K. Yoo, and S. Kim, “Copper(i) selective chemisorption on magnetite (fe3o4) over gold(i) ions in chloride solution with cyanide,” Hydrometallurgy, vol. 201, May 2021. [Online]. Available: https://doi.org/10.1016/j.hydromet.2021.105560
S. Chander and A. Gupta, “Fabrication of mango-leaf biowaste mediated green magnetite (fe3o4@mbe nps) and modified edta/fe3o4@mbe ncs for enhanced heavy metals sequestration: Characterisation, simulation modelling, mechanism, cost-effectiveness and electroplating wastewater performance,” Separation and Purification Technology, vol. 358, no. Part A., Jun. 07, 2025. [Online]. Available: https://doi.org/10.1016/j.seppur.2024.130246
L. Mavaddatiyan and B. Zeynizadeh, “A new strategy for immobilization of copper on the fe3o4@edta nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also n-acetylation of arylamines,” Heliyon, vol. 10, no. 15, Aug. 15 2024. [Online]. Available: https://doi.org/10.1016/j.heliyon.2024.e35062
Z. Shan, F. Ma, M. Xu, X. Shan, L. Shan, C. Cui, and et al., “Kinetics and mechanism of enhanced norfloxacin degradation by fe3o4@la−bifeo3 based on weak magnetization and efficient charge separation,” Chemical Engineering Journal, vol. 466, Jun. 14, 2023. [Online]. Available: https://doi.org/10.1016/j.cej.2023.143229
G. T. A. D. Santos, A. C. Estrada, C. O. Amorim, J. S. Amaral, J. Deuermeier, A. C. Duarte, and P. S. M. Santos, “Hybrid nanocomposites of fe3o4/sio2-edta: Holistic comparison of one-step and two-step modification methods,” Powder Technology, vol. 444, Aug. 1, 2024. [Online]. Available: https://doi.org/10.1016/j.powtec.2024.120046
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.
Twitter