Polymeric membranes of PVDF and PS for adsorption of copper ions in water
DOI:
https://doi.org/10.17533/udea.redin.20250573Keywords:
Nanotechnology, fibers, magnetism, environmentAbstract
Water pollution caused by heavy metals represents a critical global concern due to its harmful effects on human health and aquatic ecosystems. Ion adsorption membranes have emerged as effective solutions for water decontamination. Accordingly, this study provides a physicochemical evaluation of a magnetic polymeric membrane designed for the adsorption of copper ions (Cu²⁺), fabricated via electrospinning. The membrane consists of a polyvinylidene fluoride (PVDF) and polystyrene (PS) polymeric matrix embedded with magnetite (Fe₃O₄) nanoparticles (NPs) functionalized using ethylenediaminetetraacetic acid (EDTA). Morphological characterization through scanning electron microscopy (SEM) indicated fiber diameters averaging approximately 3 µm. Fourier-transform infrared spectroscopy (FTIR) confirmed successful functionalization with EDTA as a chelating agent. Adsorption data fitted to the Langmuir isotherm model indicated a maximum adsorption capacity of 25.1 mg g⁻¹ for the PVDF/PS@Fe₃O₄-EDTA polymeric membrane. Magnetic characterization revealed superparamagnetic and ferromagnetic properties. Overall, the membrane demonstrated proficient adsorption of copper ions due to available functional adsorption sites and the incorporation of magnetic nanoparticles.
Downloads
References
H. Chen, J. Lin, N. Zhang, L. Chen, S. Zhong, Y. Wang, and et al., “Preparation of mgal-edta-ldh based electrospun nanofiber membrane and its adsorption properties of copper(ii) from wastewater,” Journal of Hazardous Materials, vol. 345, Mar. 2018. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2017.11.002
E. Lopez, , M. Gómez, I. Becar, P. Zapata, J. Pizarra, M. Navlani-García, and et al., “Removal of mo(vi), pb(ii), and cu(ii) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers,” International Journal of Biological Macromolecules, vol. 269, no. Part 2, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132160
H. Yang, P. Zhang, Q. Zheng, G. Nie, A. Hayat, M. A. Bajaber, and et al., “Synergistically active fe3o4 magnetic and edta modified cellulose cotton fabric using chemical method and their effective pollutants removal ability from wastewater,” International Journal of Biological Macromolecules, vol. 274, no. Part 1, Aug. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132996
Z. Jiang, L. D. Tijing, A. Amarjargal, C. Hee-Park, K.-J. An, H. K. Shon, and C. S. Kim, “Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning,” Composites Part B: Engineering, vol. 77, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesb.2015.03.067
A. Thakur, A. Kumar, and A. Singh, “Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus,” Carbon, vol. 217, Jan. 25, 2024. [Online]. Available: https://doi.org/10.1016/j.carbon.2023.118621
X. Xu, M. Zhang, H. Lv, Y. Zhou, Y. Yang, and D. G. Yu, “Electrospun polyacrylonitrile-based lace nanostructures and their cu(ii) adsorption,” Separation and Purification Technology, vol. 288, May. 01, 2022. [Online]. Available: https://doi.org/10.1016/j.seppur.2022.120643
W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, 2006. [Online]. Available: https://doi.org/10.1088/0957-4484/17/14/R01
V. Mohanapriya, R. Sakthivel, N. D. K. Pham, C. K. Cheng, H. S. Le, and T. M. H. Dong, “Nanotechnology—a ray of hope for heavy metals removal,” Chemosphere, vol. 311, no. Part 1, Jan. 2023. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.136989
O. Hakami, Y. Zhang, and C. J. Banks, “Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of hg from water,” Water Research, vol. 46, no. 12, Aug. 2012. [Online]. Available: https://doi.org/10.1016/j.watres.2012.04.032
M. Shahrashoub and S. Bakhtiari, “The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies,” Microporous and Mesoporous Materials, vol. 311, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.micromeso.2020.110692
S. L. Iconaru, R. Guégan, C. L. Popa, M. Motelica-Heino, C. S. Ciobanu, and D. Predoi, “Magnetite (fe3o4) nanoparticles as adsorbents for as and cu removal,” Applied Clay Science, vol. 134, no. Part 2, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.clay.2016.08.019
S. Chen and F. Xie, “Selective adsorption of copper (ii) ions in mixed solution by fe3O4 − mnO2-edta magnetic nanoparticles,” Applied Surface Science, vol. 507, Mar. 2020. [Online]. Available: https://doi.org/10.1016/j.apsusc.2019.145090
Y. Liu, R. Fu, Y. Sun, X. Zhou, S. A. Baig, and X. Xu, “Multifunctional nanocomposites fe3o4@sio2-edta for pb(ii) and cu(ii) removal from aqueous solutions,” Applied Surface Science, vol. 369, Apr. 30, 2016. [Online]. Available: https://doi.org/10.1016/j.apsusc.2016.02.043
A. G. Magdalena, I. M. B. Silva, R. F. C. Marques, A. R. F. Pipi, P. N. Lisboa-Filho, and M. Jafelicci, “Edta-functionalized fe3o4 nanoparticles,” Journal of Physics and Chemistry of Solids, vol. 113, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.jpcs.2017.10.002
M. E. B. Pineda and A. M. G. Rodríguez, “Metales pesados (cd, cr y hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación,” Revista I3+, Investigación, Innovación, Ingeniería, vol. 2, no. 2, 2015. [Online]. Available: https://doi.org/10.24267/23462329.113
Y. G. Wibowo, D. Anwar, H. Safitri, I. Surya, S. Sudibyo, A. Tawfiequrrahman-Yuliansyah, and et al., “Functionalized magnetite-biochar with live and dead bacteria for adsorption-biosorption of highly toxic metals: Cd, hg, and pb,” Next Materials, vol. 6, Jan. 2025. [Online]. Available: https://doi.org/10.1016/j.nxmate.2025.100487
L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination, vol. 308, Jan. 02, 2013. [Online]. Available: https://doi.org/10.1016/j.desal.2010.11.033
A. P. Venugopal, O. Cespedes, and S. J. Russell, “Controlling dielectric and magnetic properties of pvdf/magnetite nanocomposite fibre webs,” International Journal of Polymer Science, vol. 2014, no. 1, Apr. 27, 2014. [Online]. Available: https://doi.org/10.1155/2014/102946
J. A. González-Sánchez, “Study of nanofibers formed by magnetic field assisted electrospinning using solutions containing pvdf, dmf, acetone and fe3o4 nanoparticles,” PhD. thesis, Universidad de Puerto Rico, Puerto Rico, 2015.
M. T. Rahul, S. K. Chacko, B. Raneesh, A. P. K, P. M. G. Nambissan, N. Kalarikkal, and et al., “al3fe5o12 nanoparticles loaded electrospun pvdf fibres: An inorganic-organic material with multifunctional traits,” Materials Chemistry and Physics, vol. 282, Apr. 15, 2022. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2022.125977
F. Mokhtari, A. Samadi, A. O. Rashed, X. Li, J. M. Razal, L. Kong, and et al., “Recent progress in electrospun polyvinylidene fluoride (pvdf)-based nanofibers for sustainable energy and environmental applications,” Progress in Materials Science, vol. 148, Feb. 2025. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2024.101376
M. I. Martín, F. A. López-Gómez, and F. J. Alguacil, “Kinetic study of the removal of cu (ii) from aqueous solutions by rolling mill scale,” Revista de Metalurgia, vol. 41, no. 4, 2005. [Online]. Available: https://doi.org/10.3989/revmetalm.2005.v41.i4.217
Y. Wang, X. Wang, Y. Ding, Z. Zhou, C. Hao, and S. Zhou, “Novel sodium lignosulphonate assisted synthesis of well dispersed fe3o4 microspheres for efficient adsorption of copper (ii),” Powder Technoly, vol. 325, Feb. 01, 2018. [Online]. Available: https://doi.org/10.1016/j.powtec.2017.11.055
H. Moridi, M. Talebi, B. Jafarnezhad, S. E. Mousavi, and S. Abbasizadeh, “The role of chitosan grafted copolymer/zeolite schiff base nanofiber in adsorption of copper and zinc cations from aqueous media,” International Journal of Biological Macromolecules, vol. 278, no. Part 3, Oct. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.135003
S. Wang, Z. Sun, E. Yan, J. Yuan, Y. Gao, Y. Bai, and et al., “Magnetic composite nanofibers fabricated by electrospinning of fe3o4/gelatin aqueous solutions,” Materials Science and Engineering: B, vol. 190, Dec. 2014. [Online]. Available: https://doi.org/10.1016/j.mseb.2014.10.001
H. Yang, H. Li, W. H. Shih, Y. Yamashita, and F. Ko, “Multifunctional nanoparticles reinforced nanofibers by electrospinning,” in 16th International Conference on Composite Materials, 2007. [Online]. Available: https://www.academia.edu/download/81265281/FrAM1-05ge_yangh224650p.pdf
T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean Journal of Chemical Engineering, vol. 29, Oct. 19, 2012. [Online]. Available: https://doi.org/10.1007/s11814-011-0167-5
M. Bayat, H. Yang, and F. Ko, “Electromagnetic properties of electrospun fe3o4/carbon composite nanofibers,” Polymer, vol. 52, no. 7, Mar. 23 2011. [Online]. Available: https://doi.org/10.1016/j.polymer.2011.01.057
S. Si, C. Li, X. Wang, D. Yu, Q. Peng, and Y. Li, “Magnetic monodisperse fe3o4 nanoparticles,” Crystal Growth & Design, vol. 5, no. 2, Jan. 07, 2005. [Online]. Available: https://doi.org/10.1021/cg0497905
Y. Liu, M. Chen, and H. Yongmei, “Study on the adsorption of cu(ii) by edta functionalized fe3o4 magnetic nano-particles,” Chemical Engineering Journal, vol. 218, Feb. 15 2013. [Online]. Available: https://doi.org/10.1016/j.cej.2012.12.027
M. Hezarjaribi, G. H. Bakeri, M. Sillanpää, M. J. Chaichi, and S. Akbari, “Novel adsorptive membrane through embedding thiol-functionalized hydrous manganese oxide into pvc electrospun nanofiber for dynamic removal of cu(ii) and ni(ii) ions from aqueous solution,” Journal of Water Process Engineering, vol. 37, Oct. 2020. [Online]. Available: https://doi.org/10.1016/j.jwpe.2020.101401
T. Akbarpour, A. Khazaei, M. Mohammadi, and N. Sarmasti, “fe3o4 nanoparticles decorated with a modified carbon quantum dot shell: Synthesis, characterization and its evaluation as an efficient adsorbent for cu(ii) and zn(ii) ions adsorption,” Polycyclic Aromatic Compounds, vol. 45, no. 7, 2025. [Online]. Available: https://doi.org/10.1080/10406638.2025.2453527
S. Sulaiman, R. Syahidah-Azis, I. Ismail, A. H. Shaari, H. C. man, N. A. A. Zari, and et al., “Structural, morphological, magnetic and adsorption properties of fe3o4 for copper removal from aqueous solution,” Desalination and Water Treatment, vol. 215, Mar. 2021. [Online]. Available: https://doi.org/10.5004/dwt.2021.26769
M. Bae, H. Lee, K. Yoo, and S. Kim, “Copper(i) selective chemisorption on magnetite (fe3o4) over gold(i) ions in chloride solution with cyanide,” Hydrometallurgy, vol. 201, May 2021. [Online]. Available: https://doi.org/10.1016/j.hydromet.2021.105560
S. Chander and A. Gupta, “Fabrication of mango-leaf biowaste mediated green magnetite (fe3o4@mbe nps) and modified edta/fe3o4@mbe ncs for enhanced heavy metals sequestration: Characterisation, simulation modelling, mechanism, cost-effectiveness and electroplating wastewater performance,” Separation and Purification Technology, vol. 358, no. Part A., Jun. 07, 2025. [Online]. Available: https://doi.org/10.1016/j.seppur.2024.130246
L. Mavaddatiyan and B. Zeynizadeh, “A new strategy for immobilization of copper on the fe3o4@edta nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also n-acetylation of arylamines,” Heliyon, vol. 10, no. 15, Aug. 15 2024. [Online]. Available: https://doi.org/10.1016/j.heliyon.2024.e35062
Z. Shan, F. Ma, M. Xu, X. Shan, L. Shan, C. Cui, and et al., “Kinetics and mechanism of enhanced norfloxacin degradation by fe3o4@la−bifeo3 based on weak magnetization and efficient charge separation,” Chemical Engineering Journal, vol. 466, Jun. 14, 2023. [Online]. Available: https://doi.org/10.1016/j.cej.2023.143229
G. T. A. D. Santos, A. C. Estrada, C. O. Amorim, J. S. Amaral, J. Deuermeier, A. C. Duarte, and P. S. M. Santos, “Hybrid nanocomposites of fe3o4/sio2-edta: Holistic comparison of one-step and two-step modification methods,” Powder Technology, vol. 444, Aug. 1, 2024. [Online]. Available: https://doi.org/10.1016/j.powtec.2024.120046
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter