Polymeric membranes of PVDF and PS for adsorption of copper ions in water

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250573

Keywords:

Nanotechnology, fibers, magnetism, environment

Abstract

Water pollution caused by heavy metals represents a critical global concern due to its harmful effects on human health and aquatic ecosystems. Ion adsorption membranes have emerged as effective solutions for water decontamination. Accordingly, this study provides a physicochemical evaluation of a magnetic polymeric membrane designed for the adsorption of copper ions (Cu²⁺), fabricated via electrospinning. The membrane consists of a polyvinylidene fluoride (PVDF) and polystyrene (PS) polymeric matrix embedded with magnetite (Fe₃O₄) nanoparticles (NPs) functionalized using ethylenediaminetetraacetic acid (EDTA). Morphological characterization through scanning electron microscopy (SEM) indicated fiber diameters averaging approximately 3 µm. Fourier-transform infrared spectroscopy (FTIR) confirmed successful functionalization with EDTA as a chelating agent. Adsorption data fitted to the Langmuir isotherm model indicated a maximum adsorption capacity of 25.1 mg g⁻¹ for the PVDF/PS@Fe₃O₄-EDTA polymeric membrane. Magnetic characterization revealed superparamagnetic and ferromagnetic properties. Overall, the membrane demonstrated proficient adsorption of copper ions due to available functional adsorption sites and the incorporation of magnetic nanoparticles.

|Abstract
= 165 veces | PDF
= 62 veces|

Downloads

Download data is not yet available.

Author Biographies

Luz Amanda Montes- Malagón, Universidad Pegagógica y Tecnológica de Colombia UPTC

Professional in Physics, Engineering School

Yaneth Pineda-Triana, Universidad Pedagógica y Tenológica de Colombia

Doctor in Mechanical and Materials Engineering from the Universidad Politécnica de Valencia, Spain. Her career has had an impact as academic director of the Master of Metalurgía y Ciencia de los Materiales and Instituto para la Investigación y la Innovación en Ciencias de los Materiales INCITEMA of the UPTC, she currently works in research lines such as metallography, ultrasound, crystallography, quality management and metallurgy.

Edwin Gómez-Pachón, Universidad Pedagógica y Tecnológica de Colombia

Doctor in Materials Science and Engineering from the Universidad Nacional Autónoma de México UNAM. Research professor at the Universidad Pedagógica y Tecnológica de Colombia UPTC on topics of polymers, circular economy, nanomaterials, tissue engineering and advanced materials, director of the DITMAV group. Currently director of the Research and Extension Management Center of the Duitama Faculty of UPTC.

Ángela Sánchez-Cepeda, Universidad Pedagógica y Tecnológica de Colombia

Doctorate in Chemical Sciences at the Universidad Pedagógica y Tecnológica de Colombia UPTC. His research is based on biomaterials, tissue engineering, polymeric biomaterials, nanobiotechnology and polymeric materials.

References

H. Chen, J. Lin, N. Zhang, L. Chen, S. Zhong, Y. Wang, and et al., “Preparation of mgal-edta-ldh based electrospun nanofiber membrane and its adsorption properties of copper(ii) from wastewater,” Journal of Hazardous Materials, vol. 345, Mar. 2018. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2017.11.002

E. Lopez, , M. Gómez, I. Becar, P. Zapata, J. Pizarra, M. Navlani-García, and et al., “Removal of mo(vi), pb(ii), and cu(ii) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers,” International Journal of Biological Macromolecules, vol. 269, no. Part 2, Jun. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132160

H. Yang, P. Zhang, Q. Zheng, G. Nie, A. Hayat, M. A. Bajaber, and et al., “Synergistically active fe3o4 magnetic and edta modified cellulose cotton fabric using chemical method and their effective pollutants removal ability from wastewater,” International Journal of Biological Macromolecules, vol. 274, no. Part 1, Aug. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.132996

Z. Jiang, L. D. Tijing, A. Amarjargal, C. Hee-Park, K.-J. An, H. K. Shon, and C. S. Kim, “Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning,” Composites Part B: Engineering, vol. 77, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.compositesb.2015.03.067

A. Thakur, A. Kumar, and A. Singh, “Adsorptive removal of heavy metals, dyes, and pharmaceuticals: Carbon-based nanomaterials in focus,” Carbon, vol. 217, Jan. 25, 2024. [Online]. Available: https://doi.org/10.1016/j.carbon.2023.118621

X. Xu, M. Zhang, H. Lv, Y. Zhou, Y. Yang, and D. G. Yu, “Electrospun polyacrylonitrile-based lace nanostructures and their cu(ii) adsorption,” Separation and Purification Technology, vol. 288, May. 01, 2022. [Online]. Available: https://doi.org/10.1016/j.seppur.2022.120643

W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, 2006. [Online]. Available: https://doi.org/10.1088/0957-4484/17/14/R01

V. Mohanapriya, R. Sakthivel, N. D. K. Pham, C. K. Cheng, H. S. Le, and T. M. H. Dong, “Nanotechnology—a ray of hope for heavy metals removal,” Chemosphere, vol. 311, no. Part 1, Jan. 2023. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.136989

O. Hakami, Y. Zhang, and C. J. Banks, “Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of hg from water,” Water Research, vol. 46, no. 12, Aug. 2012. [Online]. Available: https://doi.org/10.1016/j.watres.2012.04.032

M. Shahrashoub and S. Bakhtiari, “The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies,” Microporous and Mesoporous Materials, vol. 311, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.micromeso.2020.110692

S. L. Iconaru, R. Guégan, C. L. Popa, M. Motelica-Heino, C. S. Ciobanu, and D. Predoi, “Magnetite (fe3o4) nanoparticles as adsorbents for as and cu removal,” Applied Clay Science, vol. 134, no. Part 2, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.clay.2016.08.019

S. Chen and F. Xie, “Selective adsorption of copper (ii) ions in mixed solution by fe3O4 − mnO2-edta magnetic nanoparticles,” Applied Surface Science, vol. 507, Mar. 2020. [Online]. Available: https://doi.org/10.1016/j.apsusc.2019.145090

Y. Liu, R. Fu, Y. Sun, X. Zhou, S. A. Baig, and X. Xu, “Multifunctional nanocomposites fe3o4@sio2-edta for pb(ii) and cu(ii) removal from aqueous solutions,” Applied Surface Science, vol. 369, Apr. 30, 2016. [Online]. Available: https://doi.org/10.1016/j.apsusc.2016.02.043

A. G. Magdalena, I. M. B. Silva, R. F. C. Marques, A. R. F. Pipi, P. N. Lisboa-Filho, and M. Jafelicci, “Edta-functionalized fe3o4 nanoparticles,” Journal of Physics and Chemistry of Solids, vol. 113, Feb. 2018. [Online]. Available: https://doi.org/10.1016/j.jpcs.2017.10.002

M. E. B. Pineda and A. M. G. Rodríguez, “Metales pesados (cd, cr y hg): su impacto en el ambiente y posibles estrategias biotecnológicas para su remediación,” Revista I3+, Investigación, Innovación, Ingeniería, vol. 2, no. 2, 2015. [Online]. Available: https://doi.org/10.24267/23462329.113

Y. G. Wibowo, D. Anwar, H. Safitri, I. Surya, S. Sudibyo, A. Tawfiequrrahman-Yuliansyah, and et al., “Functionalized magnetite-biochar with live and dead bacteria for adsorption-biosorption of highly toxic metals: Cd, hg, and pb,” Next Materials, vol. 6, Jan. 2025. [Online]. Available: https://doi.org/10.1016/j.nxmate.2025.100487

L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, “Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review,” Desalination, vol. 308, Jan. 02, 2013. [Online]. Available: https://doi.org/10.1016/j.desal.2010.11.033

A. P. Venugopal, O. Cespedes, and S. J. Russell, “Controlling dielectric and magnetic properties of pvdf/magnetite nanocomposite fibre webs,” International Journal of Polymer Science, vol. 2014, no. 1, Apr. 27, 2014. [Online]. Available: https://doi.org/10.1155/2014/102946

J. A. González-Sánchez, “Study of nanofibers formed by magnetic field assisted electrospinning using solutions containing pvdf, dmf, acetone and fe3o4 nanoparticles,” PhD. thesis, Universidad de Puerto Rico, Puerto Rico, 2015.

M. T. Rahul, S. K. Chacko, B. Raneesh, A. P. K, P. M. G. Nambissan, N. Kalarikkal, and et al., “al3fe5o12 nanoparticles loaded electrospun pvdf fibres: An inorganic-organic material with multifunctional traits,” Materials Chemistry and Physics, vol. 282, Apr. 15, 2022. [Online]. Available: https://doi.org/10.1016/j.matchemphys.2022.125977

F. Mokhtari, A. Samadi, A. O. Rashed, X. Li, J. M. Razal, L. Kong, and et al., “Recent progress in electrospun polyvinylidene fluoride (pvdf)-based nanofibers for sustainable energy and environmental applications,” Progress in Materials Science, vol. 148, Feb. 2025. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2024.101376

M. I. Martín, F. A. López-Gómez, and F. J. Alguacil, “Kinetic study of the removal of cu (ii) from aqueous solutions by rolling mill scale,” Revista de Metalurgia, vol. 41, no. 4, 2005. [Online]. Available: https://doi.org/10.3989/revmetalm.2005.v41.i4.217

Y. Wang, X. Wang, Y. Ding, Z. Zhou, C. Hao, and S. Zhou, “Novel sodium lignosulphonate assisted synthesis of well dispersed fe3o4 microspheres for efficient adsorption of copper (ii),” Powder Technoly, vol. 325, Feb. 01, 2018. [Online]. Available: https://doi.org/10.1016/j.powtec.2017.11.055

H. Moridi, M. Talebi, B. Jafarnezhad, S. E. Mousavi, and S. Abbasizadeh, “The role of chitosan grafted copolymer/zeolite schiff base nanofiber in adsorption of copper and zinc cations from aqueous media,” International Journal of Biological Macromolecules, vol. 278, no. Part 3, Oct. 2024. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2024.135003

S. Wang, Z. Sun, E. Yan, J. Yuan, Y. Gao, Y. Bai, and et al., “Magnetic composite nanofibers fabricated by electrospinning of fe3o4/gelatin aqueous solutions,” Materials Science and Engineering: B, vol. 190, Dec. 2014. [Online]. Available: https://doi.org/10.1016/j.mseb.2014.10.001

H. Yang, H. Li, W. H. Shih, Y. Yamashita, and F. Ko, “Multifunctional nanoparticles reinforced nanofibers by electrospinning,” in 16th International Conference on Composite Materials, 2007. [Online]. Available: https://www.academia.edu/download/81265281/FrAM1-05ge_yangh224650p.pdf

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean Journal of Chemical Engineering, vol. 29, Oct. 19, 2012. [Online]. Available: https://doi.org/10.1007/s11814-011-0167-5

M. Bayat, H. Yang, and F. Ko, “Electromagnetic properties of electrospun fe3o4/carbon composite nanofibers,” Polymer, vol. 52, no. 7, Mar. 23 2011. [Online]. Available: https://doi.org/10.1016/j.polymer.2011.01.057

S. Si, C. Li, X. Wang, D. Yu, Q. Peng, and Y. Li, “Magnetic monodisperse fe3o4 nanoparticles,” Crystal Growth & Design, vol. 5, no. 2, Jan. 07, 2005. [Online]. Available: https://doi.org/10.1021/cg0497905

Y. Liu, M. Chen, and H. Yongmei, “Study on the adsorption of cu(ii) by edta functionalized fe3o4 magnetic nano-particles,” Chemical Engineering Journal, vol. 218, Feb. 15 2013. [Online]. Available: https://doi.org/10.1016/j.cej.2012.12.027

M. Hezarjaribi, G. H. Bakeri, M. Sillanpää, M. J. Chaichi, and S. Akbari, “Novel adsorptive membrane through embedding thiol-functionalized hydrous manganese oxide into pvc electrospun nanofiber for dynamic removal of cu(ii) and ni(ii) ions from aqueous solution,” Journal of Water Process Engineering, vol. 37, Oct. 2020. [Online]. Available: https://doi.org/10.1016/j.jwpe.2020.101401

T. Akbarpour, A. Khazaei, M. Mohammadi, and N. Sarmasti, “fe3o4 nanoparticles decorated with a modified carbon quantum dot shell: Synthesis, characterization and its evaluation as an efficient adsorbent for cu(ii) and zn(ii) ions adsorption,” Polycyclic Aromatic Compounds, vol. 45, no. 7, 2025. [Online]. Available: https://doi.org/10.1080/10406638.2025.2453527

S. Sulaiman, R. Syahidah-Azis, I. Ismail, A. H. Shaari, H. C. man, N. A. A. Zari, and et al., “Structural, morphological, magnetic and adsorption properties of fe3o4 for copper removal from aqueous solution,” Desalination and Water Treatment, vol. 215, Mar. 2021. [Online]. Available: https://doi.org/10.5004/dwt.2021.26769

M. Bae, H. Lee, K. Yoo, and S. Kim, “Copper(i) selective chemisorption on magnetite (fe3o4) over gold(i) ions in chloride solution with cyanide,” Hydrometallurgy, vol. 201, May 2021. [Online]. Available: https://doi.org/10.1016/j.hydromet.2021.105560

S. Chander and A. Gupta, “Fabrication of mango-leaf biowaste mediated green magnetite (fe3o4@mbe nps) and modified edta/fe3o4@mbe ncs for enhanced heavy metals sequestration: Characterisation, simulation modelling, mechanism, cost-effectiveness and electroplating wastewater performance,” Separation and Purification Technology, vol. 358, no. Part A., Jun. 07, 2025. [Online]. Available: https://doi.org/10.1016/j.seppur.2024.130246

L. Mavaddatiyan and B. Zeynizadeh, “A new strategy for immobilization of copper on the fe3o4@edta nanocomposite and its efficient catalytic applications in reduction and one-pot reductive acetylation of nitroarenes and also n-acetylation of arylamines,” Heliyon, vol. 10, no. 15, Aug. 15 2024. [Online]. Available: https://doi.org/10.1016/j.heliyon.2024.e35062

Z. Shan, F. Ma, M. Xu, X. Shan, L. Shan, C. Cui, and et al., “Kinetics and mechanism of enhanced norfloxacin degradation by fe3o4@la−bifeo3 based on weak magnetization and efficient charge separation,” Chemical Engineering Journal, vol. 466, Jun. 14, 2023. [Online]. Available: https://doi.org/10.1016/j.cej.2023.143229

G. T. A. D. Santos, A. C. Estrada, C. O. Amorim, J. S. Amaral, J. Deuermeier, A. C. Duarte, and P. S. M. Santos, “Hybrid nanocomposites of fe3o4/sio2-edta: Holistic comparison of one-step and two-step modification methods,” Powder Technology, vol. 444, Aug. 1, 2024. [Online]. Available: https://doi.org/10.1016/j.powtec.2024.120046

Downloads

Published

2025-05-05

How to Cite

Montes- Malagón, L. A., Pineda Triana, Y., Gómez-Pachón, E., & Sánchez-Cepeda, Ángela P. (2025). Polymeric membranes of PVDF and PS for adsorption of copper ions in water. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250573

Issue

Section

Research paper