Behavior and strength of welded stud shear connectors in composite beam
DOI:
https://doi.org/10.17533/udea.redin.12489Keywords:
connectors, headed stud shear, push-out test, finite element method, steel structures, composite beamsAbstract
In this paper the behaviour of stud shear connectors in composite structures is analysed. The composite section is formed by steel profiles connected to solid concrete slabs. Some effective numerical models using the finite element method to simulate the push-out test are proposed. The results obtained from the numerical analysis were verified against experimental results. The material nonlinearities were considered in the models. A bilinear model for steel was considered, and a model of plastic damage (Concrete Damaged Plasticity) in concrete was also adopted. The shear connection capacity obtained from the finite element analysis is compared with the connection strength calculated using the American Specification and the European Code for headed stud shear connector in solid slab composite section. Modifications to existing expressions in these codes are proposed. New factors that improve the prediction of the shear connection capacity are considered.
Downloads
References
D. Lam, E. Ellobody. “Behavior of Headed Stud Shear Connectors in Composite Beam”. Journal of Structural Engineering, ASCE. Vol. 131. 1. 2005. pp. 96-107. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
E. Ellobody, B. Young. “Performance of shear connection in composite beams with profiled steel sheeting”. Journal of Constructional Steel Research. Vol. 62. 2006. pp. 682-694. DOI: https://doi.org/10.1016/j.jcsr.2005.11.004
AISC. Load and resistance factor design specification for structural steel building. American Institute of Steel Construction. Chicago (USA). 2005. pp. 20-80.
Eurocode 4 (EN 1994-1-1). Desing of Composite Steel and Concrete Structures. European Committee for Standardization. Part 1.1(2004). Brussels, Belgium. 2004. pp. 14-89.
J. Bonilla. Estudio del comportamiento de conectadores tipo perno de estructuras compuestas de hormigón y acero mediante modelación numérica. Tesis de Doctorado. Universidad Central de Las Villas. Sta Clara, Cuba. 2008. pp. 46-125.
J. Lubliner, J. Oliver, S. Oller, E. Oñate. “A PlasticDamage Model for Concrete”. International Journal of Solids and Structures. Vol. 25. 1989. pp. 229-326. DOI: https://doi.org/10.1016/0020-7683(89)90050-4
J. Nie, C. Cai. “Steel-Make specific Composite Beams Considering Shear Slip Effects”. Journal of Structural Engineering. Vol. 129. 2004. pp. 495-506. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495)
J. Ollgaard, R. Slutter, J. Fisher. “Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete”. Engineering Journal, AISC. Vol. 8. 1971. pp. 55-64.
J. Bonilla, R. Larrúa, C. Recarey, E. Mirambell. “Corrección del cálculo de la capacidad resistente última de conectadores tipo perno de estructuras mixtas en la tipología de viga-losa maciza”. Revista Ingeniería Civil, CEDEX. No. 155. 2009. pp. 127-142.
M. Rambo. Behavior and Strength of Welded Stud Shear Connectors. Ph. D. Thesis. University of Blacksburg. Virginia, EE.UU. 2002. pp. 75-120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.