The thermal electrical overheating. A physicochemical perspective of the electrical warming

Authors

  • Dorimdo Elam Cárdenas Estrada Atlantic Engineering S.A.
  • Santos Gracia Villar Iberoamerican University Foundation
  • Federico Fernández Diez Polytechnic University of Catalonia
  • Luis Alonso Dzul Iberoamerican International University

DOI:

https://doi.org/10.17533/udea.redin.13115

Keywords:

electric current, mathematical model, power dissipation, resistivity, electric conductor

Abstract

The present article exposes the actual behaviors observed after  five years of investigation, experimentation and modeling, with electrical conductors that had a fault by high thermal conduction, with the principal purpose of producing a contribution that could be added to the existing regulations for the selection of wiring of electrical projects in low voltage. Till now, the experiments realized with electrical in amed conductors, in most cases are focused to trying to determine if the electric conductor was ignited by electric arch or if it was a victim of the fire, by means of physicochemical tests with the remains of the conductor. When we consider factors like the intensity of current, type of installation, environmental temperature, heat sources nearby conductors, conditions of overload, and the transverse effective section of conduction after consider skin effect and turns of cable, the selection of a suitable conductor becomes a difficult decision. All these factors are considered separately in Spanish norms as in international norms; despising in many cases some conditions that may be important cause of fault. Presented model is result of experimentation and a global analysis that takes care of all these factors simultaneously, after the review of conclusions of the most relevant chemical and physical investigations.

|Abstract
= 365 veces | PDF (ESPAÑOL (ESPAÑA))
= 114 veces|

Downloads

Download data is not yet available.

Author Biography

Federico Fernández Diez, Polytechnic University of Catalonia

Department of Engineering Projects.

References

PRIE. Plataforma para la RevisiÛn de Instalaciones ElÈctricas. Disponible en: http://www.plataformaprie.com/nivel02.asp?id03=5. 2005. Consultado el 2 de julio de 2010.

Y. Hagimoto. “Protection Failure of Short-circuit by Arcing along the Insulating Material between Two Conductors of Wiring or Wiring Devices”. Journal of Tokyo Electric Management Engineering Association. Vol 15. 1992. Disponible en: http://www.tcforensic.com.au/docs/japan/15.html. Consultado el 15 de abril de 2010.

J. Hall, A. Cote. An Overview of the Fire Problem and Fire Protection. Fire Protection Handbook. 20th ed. National Fire Protection Association. Quincy, Massachusets, USA. 2008. pp. 3-3 a 3-30.

D. C·rdenas. “La Electricidad como Fuente Generadora de Incendios”. El Tecnológico. Vol. 18. 2010. pp. 24-26.

R. Ryan, M. Chubb. Riesgos en las Instalaciones de los Edificios. Manual de ProtecciÛn Contra Incendios. 17™ ed. MAFPRE & National Fire Protection Association. Madrid, España. 1991. pp. 6-179 6-190 / 1273 - 1284.

M. Vergara “Uso de Cámaras Termográficas en Aplicaciones Eléctricas”. Revista Electroindustria. Vol. 31. 2006. Disponible en: http://www.emb.cl/electroindustria/articulo.mvc?xid=449&tip=7. Consultado el 5 julio de 2010.

UNE 20.460-5-523:2004. Instalaciones Eléctricas en Edificios. Parte 5: Selección e instalación de los materiales eléctricos. Sección 523: Intensidades admisibles en sistemas de conducción de cables. Normas UNE del REBT. Ed. AMV Ediciones. Madrid, España. 2004. 1-13.

D. Harold, M. Earley, J. O’Connor. NFPA-70. National Electrical Code. National Fire Protection Association. Quincy, Massachusets (USA). 1999. pp.70-61 a 70-70

M. Earley, J. Sheehan, J. Caloggero. Wiring Methods and Materials. National Electrical Code Handbook. 8™ ed. National Fire Protection Association. Quincy, Massachussets, USA. 1999. pp. 211-392.

R. Milatovich. Electrical Systems and Appliances. Fire Protection Handbook. 20th ed. National Fire Protection Association. Quincy, Massachusets, USA. 2008. pp. 8-127 8-173.

J. McPartland, B. McPartland. Lighting and Appliance Branch Circuits. Handbook of Practical Electrical Design. 2da ed. Ed. McGraw-Hill. New York, USA. 1995. pp. 15-171.

D. Churchward, C. Watson. NFPA-921. Guide for Fire and Explosion Investigations. National Fire Protection Association. Quincy, Massachussets, USA. 2008. pp. 67-90.

R. MacCleary, R. Thaman. “Method for Use in Fire Investigation”. U.S. Patent N.° 4,182,959. 1980.

K. Satot, H. Fukusima, S. Sigeru, M. Iwaki. VeriÆ cation SIMS Applied to the Fire Investigation for Short Circuit. Annual Mtg. of Japan Assn. for Fire Science and Engrg. Tokyo, Japón. 1998. pp. 336-336.

E. Lee, H. Ohtani, Y. Matsubara, T. Seki, H. Hasegawa, S. Imada, I. Yashiro. “Study on Discrimination between Primary and Secondary Molten Marks Using Carbonized Residue”. Fire Safety Journal. Vol. 37. 2002. pp. 353-368. DOI: https://doi.org/10.1016/S0379-7112(01)00064-9

Tokio Fire Department. “Research on First and Second Fused Mark Discrimination on Electric Wires”. Journal Japan Assn. for Fire Science and Engrg. Nº2. 1992. pp. 15-20.

S. Miyoshi. Internal Cavity Analysis of Electrical Arc Beads. 4th Asia-Oceania Symp. On Fire Science & Technology. Asia-Oceania Assn. for Fire Science & Technology. Tokyo, Japan. 2000. pp. 653-656.

Y. Ishibashi, J. Kishida. Research on First and Second Fused Mark Dscrimination of Electric Wires. Anual Mtg. Japan Assn. for Fire Science and Engrg. Tokyo, Japón. 1990. pp. 83-90.

R. Erlandsson, G. Strand. “An Investigation of Physical Characteristics Indicating Primary or Secondary Electrical Damage”. Fire Safety Journal. Vol. 8. 1984. pp .97-103. DOI: https://doi.org/10.1016/0379-7112(85)90048-7

M.N.O. Sadiku. Campos eléctricos en el espacio material. Elementos de electromagnetismo. 3™ ed. Oxford University Press. Inc. USA. 2003. pp. 161- 198.

D. Cárdenas. “Propuesta de un Modelo Matemático para calcular el Calentamiento de Conductores Eléctricos”. Tecnociencia. Vol. 12-2. 2010. pp. 71-88.

Ministerio de Ciencia y Tecnología. –Anexo-Cálculo de las Caídas de Tensión. Guía BT Anexo 2: Guía Técnica de Aplicación. Revisión 1. Madrid, España. 2003. pp.1-14.

Published

2012-10-03

How to Cite

Cárdenas Estrada, D. E., Gracia Villar, S., Fernández Diez, F., & Dzul, L. A. (2012). The thermal electrical overheating. A physicochemical perspective of the electrical warming. Revista Facultad De Ingeniería Universidad De Antioquia, (64), 57–67. https://doi.org/10.17533/udea.redin.13115