A novel aerobic-anoxic biological filter for nitrogen removal from UASB effluent using biogas compounds as electron donors for denitrification
DOI:
https://doi.org/10.17533/udea.redin.13659Keywords:
nitrification, denitrification, nitrogen, methane, biological filter, UASBAbstract
The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m3 m-2 d-1), organic (0.26 kg COD m-3 d-1) and ammonia-N (0.08 kg m-3 d-1) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L-1. Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L-1. The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.
Downloads
References
F. Çeçen, I. Gönenç I. “Criteria for nitrification and denitrification of high-strength wastes in two up flow submerged filters”. Water Environ. Res. Vol. 67. 1995. pp. 32-142. DOI: https://doi.org/10.2175/106143095X131277
M. Strous, E. Van Gerven, P. Zheng, G. Kuenen, M. Jetten. “Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different reactor configurations”. Water Res. Vol. 31. 1997. pp. 1955- 1962. DOI: https://doi.org/10.1016/S0043-1354(97)00055-9
M. C. M. Van Loosdrecht, M. S. Jetten. “Microbiological conversions in nitrogen removal”. Water Sci. Technol. Vol. 38. 1998. pp. 1-7. DOI: https://doi.org/10.2166/wst.1998.0002
J. Bosander, A. Westlund. “Operation of full-scale fluidized bed for denitrification”. Water Sci. Technol. Vol. 41. 2000. pp. 115-121. DOI: https://doi.org/10.2166/wst.2000.0184
O. Lahav, E. Artzi, S. Tarre, M. Green. “Ammonium removal using a novel unsaturated flow biological filter with passive aeration”. Water Res. Vol. 35. 2001. pp. 397-404. DOI: https://doi.org/10.1016/S0043-1354(00)00264-5
K. Than, P. Ajit. “Novel microbial nitrogen removal process”. Biotechnol. Adv. Vol. 22. 2004. pp. 519-532. DOI: https://doi.org/10.1016/j.biotechadv.2004.04.003
W. M. Rostron, D. C. Stuckey, A. A. Young. “Nitrification of high strength ammonia wastewater: comparative study of immobilization media”. Water Res. Vol. 35. 2001. pp. 1167-1178. DOI: https://doi.org/10.1016/S0043-1354(00)00365-1
Environmental Protection Agency (EPA). Process design for nitrogen control. Ed. Office of technology transfer. Washington, USA. 1975. pp. 1-64.
H. A. Gullicks, J. Cleasby. “Design of trickling filter nitrification towers”. J. Water Pollut. Control Fed. Vol. 58. 1986. pp. 60-67.
M. Boller, W. Gujer. “Nitrification in tertiary trickling filters followed by deep bed filters”. Water Res. Vol. 20. 1986. pp. 1363-1373. DOI: https://doi.org/10.1016/0043-1354(86)90134-X
D. Parker, M. Lutz, R. Dahl, S. Bernkopf. “Enhancing reaction rates in nitrifying trickling filters through biofilm control”. J. Water Pollut. Control Fed. Vol. 61. 1989. pp. 618-630.
W. Okey, O. E. Albertson. “Diffusion’s role in regulating rate and masking temperature effects in fixed film nitrification”. J. Water Pollut. Control Fed. Vol. 61. 1989. pp. 500-509.
E. A. Evans, T. Ellis, H. Gullicks, J. Ringelestein. “Trickling filter nitrification performance characteristics and potential of a full-scale municipal wastewater treatment facility”. J. Environ Eng-ASCE. Vol. 130. 2004. pp. 1280-1288. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1280)
T. C. Zhang, Y. Fu, P. Bishop. “Competition for substrate and space in biofilms”. Water Environ. Res. Vol. 67. 1995. pp. 992-1003. DOI: https://doi.org/10.2175/106143095X133220
D. Parker, T. Richards. “Nitrification in trickling filters”. J. Water Pollut. Control Fed. Vol. 58. 1986. pp. 896-902.
M. Boller, W. Gujer, M. Tschui. “Parameters affecting nitrifying biofilm reactors”. Water Sci. Technol. Vol. 29. 1994. pp. 1-11. DOI: https://doi.org/10.2166/wst.1994.0739
Metcalf and Eddy. Wastewater engineering: treatment and reuse. 4th ed. Ed. McGraw-Hill. Inc. New York, USA. 2003. pp. 888-930
R. J. Stenquist, D. Parker, J. J. Dosh. “Carbon oxidationnitrification in synthetic media filters”. J. Water Pollut. Control Fed. Vol. 46. 1974. pp. 2327-2339.
G. F. Mehlhart. “Upgrading of existing trickling filter plants for denitrification”. Water Sci. Technol. Vol. 30. 1994. pp. 173-179. DOI: https://doi.org/10.2166/wst.1994.0266
B. Dorias, P. Baumann. “Denitrification in trickling filter”. Water Sci. Technol. Vol. 30. 1994. pp. 181-184. DOI: https://doi.org/10.2166/wst.1994.0267
S. Biesterfeld, G. Farmer, L. Figueroa, D. Parker, P. Russell. “Quantification of denitrification potential in carbonaceous trickling filters”. Water Res. Vol. 37. 2003. pp. 4011-4017. DOI: https://doi.org/10.1016/S0043-1354(03)00302-6
P. Pearce. “Trickling filter for upgrading low technology wastewater plants for nitrogen removal”. Water Sci. Technol. Vol. 49. 2004. pp. 47-53. DOI: https://doi.org/10.2166/wst.2004.0801
R. F. Gonçalves, C. Chernicharo, C. De Andrade Neto, P. Sobrinho, M. Kato, R. Da Costa, M. Aisse, M. Zaiat. “Pós-tratamento de efluentes de reatores anaeróbios por reatores com biofilme”. Pós-tratamento de efluentes de reatores anaeróbio. Projeto PROSAB. Ed. Belo Horizonte. 2001. pp.171-199.
F. Thalasso, A. Vallecillo, P. García-Encina, F. FdzPolanco. “The use of methane as a sole carbon source for wastewater denitrification”. Water Res. Vol. 31. 1997. pp. 55-60. DOI: https://doi.org/10.1016/S0043-1354(96)00228-X
J. P. Rajapakse, J. E. Scutt. “Denitrification with natural gas and various new growth media”. Water Res. Vol. 33. 1999. pp. 3723-3734. DOI: https://doi.org/10.1016/S0043-1354(99)00088-3
C. Costa, C. Dijkema, M. Friedrich, P. García-Encina, F. Fernandez-Polanco, A. Stams. “Denitrification with methane as electron donor in oxygen-limited bioreactors”. App. Microbiol. Biot. Vol. 53. 2000. pp. 754-762. DOI: https://doi.org/10.1007/s002530000337
M. I. M. Soares. “Denitrification of groundwater with elemental sulfur”. Water Res. Vol. 36. 2002. pp. 1392- 1395. DOI: https://doi.org/10.1016/S0043-1354(01)00326-8
S. Islas-Lima, F. Thalasso, J. Gomez-Hernandez. “Evidence of anoxic methane oxidation coupled to denitrification”. Water Res. Vol. 38. 2004. pp. 13-16. DOI: https://doi.org/10.1016/j.watres.2003.08.024
American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater. 20th ed. Ed. American Public Health Association. Washington, DC. 1998. pp. 1-46
M. Guynot, A. Toribio, M. Quevedo, L. Muxí. “Microflora of dissimilative nitrate reduction in a denitrifying reactor”. Appl. Microbiol. Biot. Vol. 50. 1998. pp. 396-400. DOI: https://doi.org/10.1007/s002530051311
R. Del Pozo, V. Diez. “Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment”. Water Res. Vol. 39. 2005. pp. 1114-1122. DOI: https://doi.org/10.1016/j.watres.2005.01.013
E. Houbron, M. Torrijos, B. Capdeville. “An alternative use of biogas applied in water denitrification”. Water Sci. Technol. Vol. 40. 1999. pp. 115-122. DOI: https://doi.org/10.2166/wst.1999.0400
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.