A novel graphical and analytical method for the kinematic analysis of fourth class Assur groups

Authors

  • Héctor Quintero Technological University of Pereira
  • Gabriel Calle Technological University of Pereira
  • Alexander Díaz Technological University of Pereira
  • Edison Henao Technological University of Pereira

DOI:

https://doi.org/10.17533/udea.redin.13660

Keywords:

fourth class Assur group, structural analysis, kinematic analysis

Abstract

A method for the kinematic analysis of a fourth class Assur group, using a combination of graphical and analytical methods, is presented in this paper. The solution is obtained through a method in which two special Assur points are used. A mechanism of 1 DOF with a fourth class group is considered as an example to develop the proposed method. The results of this method are in agreement with the results obtained by a dynamic simulation program. Since there are no solutions for fourth class structural groups in the literature,this method allows developing a complete modular procedure for the kinematic analysis of mechanisms, with the methodological advantages that this type of solution offers.

|Abstract
= 154 veces | PDF (ESPAÑOL (ESPAÑA))
= 91 veces|

Downloads

Download data is not yet available.

Author Biographies

Héctor Quintero, Technological University of Pereira

Manufacturing Processes and Machine Design Group, Faculty of Mechanical Engineering.

Gabriel Calle, Technological University of Pereira

Manufacturing Processes and Machine Design Group, Faculty of Mechanical Engineering.

Alexander Díaz, Technological University of Pereira

Manufacturing Processes and Machine Design Group, Faculty of Mechanical Engineering.

Edison Henao, Technological University of Pereira

Manufacturing Processes and Machine Design Group, Faculty of Mechanical Engineering.

References

I. I. Artobolevski. Theory of Mechanisms and Machines. Ed.Nauka. Moscow. Russian. 1988. pp. 52-63.

P. Fanghella, C. Galleti, “A modular method for computational kinematics”. Computational Kinematics. J. Angeles, G. Hommel and P. Kovacs (editors). Ed. Kluwer. Dordrecht. 1993. pp. 275-284. DOI: https://doi.org/10.1007/978-94-015-8192-9_25

G. Calle, A. Diaz, H. F. Quintero. Análisis cinemático de mecanismos planos a partir del análisis estructural según Assur. V Congreso Iberoamericano de Ingeniería Mecánica. Merida. Venezuela. Octubre 23-26. 2001. pp. 1231-1240.

S. Mitsi, K. D. Bouzakis, G. Mansour. “Position analysis in polynomial form of planar mechanism with an Assur group of class 4 including one prismatic joint”. Mech. and Mach. Theory. Vol. 39. 2004. pp. 237-245. DOI: https://doi.org/10.1016/S0094-114X(03)00115-0

W. Y. Cheng. “The position analysis of Assur kinematic chain with five links”. Mech. and Mach. Theory. Vol. 40. 2005. pp. 1015-1029. DOI: https://doi.org/10.1016/j.mechmachtheory.2004.12.016

S. Mitsi, K. D. Bouzakis, G. Mansour, I. Popescu. “Position analysis in polynomial form of class-three Assur”. Mech. and Mach. Theory. Vol. 43. 2008. pp. 1401-1415. DOI: https://doi.org/10.1016/j.mechmachtheory.2007.12.001

K. Romaniak. Methodology of the Assur Groups Creation. 12th IFToMM World Congress. Besançon, France. June 18-21. 2007. pp. 1- 5.

G. G. Baránov. Curso de la teoría de Mecanismos y Máquinas. Ed. Mir. Barcelona. 1979. pp. 46-82.

Mashinostroyenye: Enciclopedy in 40 Vols. Dynamic and Strength of machines. Theory of Mechanisms and Machines. Vols. 1-3. Book 2. Ed. Mashinostroyenye. Moscú. 1995. pp. 415-417.

R. Brock, H. Dresig, C. Hammerschmidt, B. Hüther, E. Huhn, W. Ihme, P. Jacobi, G. Jokisch, W. Müller, M. Schulze, G. Thiel. “Kinematische Analyse ebener Mechanismen”. Getriebetechnik Lehrbuch. J. Volmer. (editor). 1ª ed. Ed. Verl Technik. Berlin. 1987. pp. 166-168.

J. Buskiewicz. “A method of optimization of solving a kinematic problem with the use of structural analysis algorithm (SAM)”. Mech. and Mach. Theory. Vol. 41. 2006. pp. 823-837 DOI: https://doi.org/10.1016/j.mechmachtheory.2005.10.003

L. T. Dvornikov, S. P. Starikov. “Kinematics and kinetostatics of Assur’s flat six-section group of the fourth class”. Mech. and Mach. Theory. Vol. 4. 2006. pp. 61-65.

M. Z. Kolovsky, A. N. Evggrafov, Y. U. Semenov, A. V. Slousch. Advanced Theory of Mechanisms and Machines. Ed. Springer. Berlin. 2000. pp. 79-85 DOI: https://doi.org/10.1007/978-3-540-46516-4_3

Published

2012-11-22

How to Cite

Quintero, H., Calle, G., Díaz, A., & Henao, E. (2012). A novel graphical and analytical method for the kinematic analysis of fourth class Assur groups. Revista Facultad De Ingeniería Universidad De Antioquia, (60), 81–91. https://doi.org/10.17533/udea.redin.13660