Transition from a predictive multiple linear regression model to an explanatory simple nonlinear regression model with higher level of prediction: A systems dynamics approach
DOI:
https://doi.org/10.17533/udea.redin.14469Keywords:
system dynamics, causality, model predictive, explanatory model, mean square error, linear regressionAbstract
One of the main assumptions of the linear regression analysis is the existence of a causal relationship between the variables analyzed, which the regression analysis does not demonstrate. This paper demonstrates the causality between the variables analyzed through the construction and analysis of the feedback from the variables under study, expressed in a causal diagram and validated through dynamic simulation. The major contribution of this research is the proposal of the use of the system dynamics approach to develop a method of transition from a multiple regression predictive model to a simpler nonlinear regression explanatory model, which increases the level of prediction of the model. The mean square error (MSE) is taken as a criterion for prediction. The validation in the transition model was performed with three linear regression models obtained experimentally in a textile company, showing a method for increasing the reliability of prediction models.
Downloads
References
P. Montgomery. Introducción al Análisis de Regresión Lineal. 1a ed. Ed. Ediciones CECSA. México DF., México. 2002. pp. 565.
E. Imgbemena, O. Mgbemena, C. Chinwuko. “A Regression Analysis Approach to Queuing System modelling: a Case of Banks”. Journal of Applied Sciences Research. Vol. 7. 2011. pp. 200-212.
S. Arulchinnappan, K. Karunakaran, G. Rajendran. “Deduction of Oral Cancer Using Fuzzy Linear Regression”. Journal of computer science. Vol. 7. 2011. pp. 1141-1145. DOI: https://doi.org/10.3844/jcssp.2011.1141.1145
O. Okereke. “Effect of Transformation on the Parameter Estimates of a Simple Linear Regression Model: A Case Study of Division of Variables by Constants”. Asian Journal of Mathematics and Statistics. Vol. 4. 2011. pp. 128-134. DOI: https://doi.org/10.3923/ajms.2011.174.180
K. Chung, P. Stacey. “Applying Regression Analysis to Improve Dyeing Process Quality: a Case Study”. Int J Adv Manuf Technol. Vol. 49. 2010. pp. 357-368. DOI: https://doi.org/10.1007/s00170-009-2381-4
G. Sekelli, G. Köksal, I. Batmaz, Ö. Bayrak. “Classification Models Based on Tanaka’s Fuzzy Linear Regression Approach: The Case of Customer Satisfaction”. Journal of Intelligent & Fuzzy Systems. Vol. 21. 2010. pp. 341-355. DOI: https://doi.org/10.3233/IFS-2010-0466
G. Bae, H. Huh. “Regression Model for Light Weight and Crashworthiness Enhancement Design of Automotive Parts in Frontal Car Crash”. International Journal of Modern Physics B. Vol. 22. 2008. pp. 5584-5589. DOI: https://doi.org/10.1142/S0217979208050851
Q. Chen, K. Au, C. Yuen, K. Yeung. “Relaxation Shrinkage Characteristics of Steam-ironed Plain Knitted Wool Fabrics”. Textile Research Journal. Vol. 72. pp. 463-467. DOI: https://doi.org/10.1177/004051750207200514
R. Baeza, J. Yáñez, J. A. Vázquez. “Sistema Integral de Control Dinámico SICD: Un Enfoque Híbrido para el Cumplimiento de las Especificaciones de calidad”. DYNA. Vol. 8. 2012. pp. 234-240. DOI: https://doi.org/10.6036/4281
J. Sterman. Business Dynamics. 1st ed. Ed. McGraw-Hill. Indianapolis, U.S.A. 2000. pp. 135-262.
H. Gutiérrez, R. de La Vara. Análisis y Diseño de Experimentos. 2a ed. Ed. Mc Graw Hill. México DF., México. 2008. pp. 338-373.
E. Martínez. “Errores Frecuentes en la Interpretación del Coeficiente de Determinación Lineal”. Anuario jurídico y económico escurialense. Vol. 38. 2005. pp. 315-332.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.