BaTiO3 cubic synthesis by chemical ways

Authors

  • Claudia Patricia Fernández Perdomo University of Cauca
  • Edison Rivera Figueroa University of Cauca
  • Jorge Enrique Rodríguez Páez University of Cauca

DOI:

https://doi.org/10.17533/udea.redin.14648

Keywords:

coprecipitation, BaTiO3, cubic phase, polymeric precursor

Abstract

In this work ceramic powders of barium titanate (BaTiO3) were synthesized by two chemical methods: coprecipitation and polymeric precursor (Pechini). These methods, highly reproducible and reliable, allowed to obtain nanosized BaTiO3 particles (<200 nm) with high chemical purity, at a temperature of 650 °C; moreover, the cubic phase of BaTiO3 was stabilized at room temperature. We conducted a brief discussion on the mechanisms of particle formation and an adequate description of the synthesis processes. The powders were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (DTA/TGA) and transmission electron microscopy (TEM).

|Abstract
= 285 veces | PDF (ESPAÑOL (ESPAÑA))
= 141 veces|

Downloads

Download data is not yet available.

Author Biographies

Claudia Patricia Fernández Perdomo, University of Cauca

Ceramic Materials Science and Technology Group (CYTEMAC), Physics Dept.

Edison Rivera Figueroa, University of Cauca

Ceramic Materials Science and Technology Group (CYTEMAC), Physics Dept.

Jorge Enrique Rodríguez Páez, University of Cauca

Ceramic Materials Science and Technology Group (CYTEMAC), Physics Dept.

References

J. Shirane. Ferroelectric crystals. Ed. Dover Publications Inc. New York. 1993. pp. 108-215.

M. H. Frey, D. A. Payne. “Grain-size effect on structure and phase transformations for barium titanate”. The American Physical Society, physical review. Vol. 54.1996. pp. 3158-3168. DOI: https://doi.org/10.1103/PhysRevB.54.3158

A. J. Moulson, J. M. Herbert, Electroceramics: materials, properties and applications. 2nd ed. Ed. John Wiley & Sons Ltda. West Sussex-England. 2003. pp. 1-167. DOI: https://doi.org/10.1002/0470867965

L. M. Levinson. Electronic ceramics: properties, devices and applications. Ed. Marcel Dekker Inc. New York. 1988. pp. 191-274.

R. C. Buchanan. Ceramic materials for electronics. 3a. ed. Ed. Marcel Dekker Inc. New York. 2004. pp. 141-206.

K. Ch. Kao. Dielectric phenomena in solids. Ed. Elsevier Academic Press. San Diego. 2004. pp. 41-112.

G. Cao. Nanostructures & Nanomaterials: synthesis, properties and applications. Ed. Imperial College Press. London. 2004. pp. 126-357.

G. Pfaff. “Sol-gel synthesis of barium titanate powders of various compositions”. J. Mater. Chem. Vol. 2. 1992. pp. 591-594. DOI: https://doi.org/10.1039/JM9920200591

K. S. Mazdiyasni. “Fine Particle Perovskite Procesing”. Am. Ceramic. Soc. Bull. Vol. 63. 1984. pp. 591-94.

W. S. Clabauhg, E. M. Swiggard, R. Gilchrist. “Preparation of Barium Titanyl Oxalate Tetrahidrate for Conversion to Barium Titanate High Purity”. J. Res. Natl. Bur. Stand. Vol. 56. 1956. pp. 289-291. DOI: https://doi.org/10.6028/jres.056.037

H. Xu, L. Gao, J. Guo. “Preparation and characterizations of tetragonal barium titanate powders by hydrothermal method”. J. Euro. Ceram. Soc. Vol. 22. 2002. pp.1163-1170. DOI: https://doi.org/10.1016/S0955-2219(01)00425-3

S. S. Flaschen. “An aqueous synthesis of barium titanate”. J. Am. Chem. Soc. Vol. 77. 1955. pp. 6194. DOI: https://doi.org/10.1021/ja01628a030

V. Vinothini, P. Singh, M. Balasubramanian. “Synthesis of barium titanate nanopowder using polymeric precursor method”. Ceram Int. Vol. 32. 2006. pp. 99- 103. DOI: https://doi.org/10.1016/j.ceramint.2004.12.012

J. Jolivet. Metal oxide chemistry and synthesis. Ed. Jhon. Wiley & Sons. New York. 2000. pp. 12.

J. F. Fernández, P. Duran, C. Moure. “Reaction Kinetics in the BaTiO3 Synthesis: influence of the TiO2 crystalline structure and morphology”. Ceramics today-tomorrow’s. Ed. Elsevier Science Publishers. Amsterdam. 1991. pp. 1973-1982.

K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds. part B. 5a. ed. Ed. Wiley-interscience. New Jersey. 1997. pp. 300.

P. Pradeep, H. R. Subas. “Low-temperature synthesis and processing of electronic materials in the BaOTiO 2 system”. Review. J. Mater. Sci. Vol. 25. 1990. pp. 1169-1183. DOI: https://doi.org/10.1007/BF00585422

Published

2013-02-28

How to Cite

Fernández Perdomo, C. P., Rivera Figueroa, E., & Rodríguez Páez, J. E. (2013). BaTiO3 cubic synthesis by chemical ways. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 9–19. https://doi.org/10.17533/udea.redin.14648