Simulation of the evaporation of drops from palm and castor oil biodiesels based on physical properties

Authors

  • Maria Luisa Botero National University of Colombia
  • Alejandro Molina National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.14651

Keywords:

diesel, biodiesel, heat transfer, droplet evaporation

Abstract

A reduction of oil reserves and an augmented production of greenhouse gases from fossil fuels have increased the use of biodiesel in internal combustion engines. Although physical and chemical properties of biodiesel and diesel are similar enough that allow the use of pure biodiesel in a traditional engine without considerable adjustments, differences in chemical structure of diesel and biodiesel change vaporization and combustion rates and can affect engine performance. In this study a model that can predict the evaporation rate of palm and castor oil biodiesel droplets at atmospheric pressure was developed. The model was validated with experimental data from the literature for the evaporation of n-heptane-droplets. The model estimates thermo-physical properties of biofuels using contribution group theory and was used to determine that castor oil biodiesel presents a lower evaporation rate than palm oil biodiesel due to differences in their physical properties (mainly density and vaporization enthalpy) which can be explained by a longer molecule and the presence of a hydroxyl groups in methyl ricinoleate, its main component.

|Abstract
= 409 veces | PDF (ESPAÑOL (ESPAÑA))
= 63 veces|

Downloads

Download data is not yet available.

Author Biographies

Maria Luisa Botero, National University of Colombia

Bioprocesses and Reactive Flows, Faculty of Mines.

Alejandro Molina, National University of Colombia

Bioprocesses and Reactive Flows, Faculty of Mines.

References

K. Bozvas. “Biodiesel as an alternative motor fuel: Production and policies in the European Union”. Renewable and Sustainable Energy Reviews. Vol. 12. 2008. pp. 542-552. DOI: https://doi.org/10.1016/j.rser.2005.06.001

M. Fangrui, A. H. Milford. “Biodiesel production: a review”. Bioresource Technology. Vol. 70. 1999. pp. 1-15.

S. A. Basha, K. Gopal, S. Jebaraj. “A review on biodiesel production, combustion, emissions and performance”. Renewable and Sustainable EnergyReviews. Vol. 13. 2008. pp. 1628-1634. DOI: https://doi.org/10.1016/j.rser.2008.09.031

A. Murugesan, C. Umarani, R. Subramanian, N. Nedunchezhian. “Bio-diesel as an alternative fuel for diesel engines-A review”. Renewable and Sustainable Energy Reviews. Vol. 13. 2009. pp. 653-662. DOI: https://doi.org/10.1016/j.rser.2007.10.007

C. K. Law. Combustion Physics. Ed. Cambridge Press. New York. 2006. pp. 213-217.

W. A. Sirignano. “Fuel droplet vaporization and spray combustion theory”. Progress in Energy Combust Science. Vol. 9. 1983. pp. 291-322. DOI: https://doi.org/10.1016/0360-1285(83)90011-4

J. B. Heywood. Internal Combustion Engine Fundamentals. Ed. McGraw Hill. México. 1988. pp. 491-502.

G. Castanet, P. Lavieille, F. Lemoine, M. Lebouché, A. Atthasit, Y. Biscos. “Energetic budget on an evaporating monodisperse droplet stream using combined optical methods Evaluation of the convective heat transfer”. International Journal of Heat and Mass Transfer. Vol. 45. 2002. pp. 50-67. DOI: https://doi.org/10.1016/S0017-9310(02)00204-1

C. Maqua, G. Castanet, F. Lemoine. “Bicomponent droplets evaporation: Temperature measurements and modelling”. Fuel. Vol. 87. 2008. pp. 2932-2942. DOI: https://doi.org/10.1016/j.fuel.2008.04.021

C. Maqua, G. Castanet, F. Grisch, F. Lemoine, T. Kristyadi, S. S. Sazhin. “Monodisperse droplet heating and evaporation: Experimental study and modelling”. International Journal of Heat and Mass Transfer. Vol. 48. 2008. pp. 3261-3275.

H. Nomura, H. Yasushige, H. J. Rath, S. Junichi, K. Michikata. “Experimental study on highpressure droplet evaporation using microgravity conditions”. Proc. Comb. Inst. Vol. 26. 1996. pp. 1267- 1273. DOI: https://doi.org/10.1016/S0082-0784(96)80344-4

A. P. Kryukov, V. Levashov, Yu, S. S. Sazhin. “Evaporation of diesel fuel droplets: Kinetics versus hydrodynamic models”. International Journal of Heat and Mass Transfer. Vol. 47. 2007. pp. 2541-9. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.004

S. S. Sazhin, P. A. Krutitskii, W. A. Abdelghaffar, E. M. Sazhina, S. V. Mikhalovsky, S. T. Meikle, M. R. Heikal. “Transient heating of diesel fuel droplets”. International Journal of Heat and Mass Transfer. Vol. 47. 2004. pp. 3327-2240. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.011

S. S. Sazhin, W. A. Abdelghaffar, P. A. Krutitskii, E. M. Sazhina, M. R. Heikal. “New approaches to numerical modelling of droplet transient heating and evaporation”. International Journal of Heat and Mass Transfer. Vol. 48. 2005. pp. 4215-28. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.007

S. S. Sazhin, W. A. Abdelghaffar, M. R. Heikal. “Models for droplet transient heating: Effects on droplet evaporation, ignition, and break-up”. International Journal of Thermal Sciences. Vol. 44. 2005. pp. 610- 22. DOI: https://doi.org/10.1016/j.ijthermalsci.2005.02.004

S. S. Sazhin, T. Kristyadi, W. A. Abdelghaffar, M. R. Heikal. “Models for fuel droplet heating and evaporation: Comparative analysis”. Fuel. Vol. 85. 2006. pp.1613-1630. DOI: https://doi.org/10.1016/j.fuel.2006.02.012

G. A. E. Godsave. “Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel”. Proceedings of the Combustion Institute. Vol. 4. 1953. pp. 818-30. DOI: https://doi.org/10.1016/S0082-0784(53)80107-4

S. L. Manzello, M. Y. Choi, A. Kazakov, F. L. Dryer, R. Dobashi, T. Hiranothe. “Burning of large n-Heptane droplets in microgravity”. Proceedings of the Combustion Institute. Vol. 28. 2002. pp.1079-1086. DOI: https://doi.org/10.1016/S0082-0784(00)80317-3

S. R. Turns. An introduction to combustion: Concepts and applications. 2ª ed. Ed McGraw-Hill. New York. 2001. pp. 1613-30

D. B. Spalding. “The combustion of liquid fuels”. Proceedings of the Combustion Institute. Vol. 4. 1953. pp. 847-64. DOI: https://doi.org/10.1016/S0082-0784(53)80110-4

W. Yuan A. C. Hansen, Q. Zhang. “Predicting the physical properties of biodiesel for combustion modelling”. American Society of Agricultural Engineers. Vol. 46. 2003. pp. 1487-1493. DOI: https://doi.org/10.13031/2013.15631

G. Knothe. “Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters”. Fuel Processing Technology. Vol. 86. 2005. pp. 1059-1070. DOI: https://doi.org/10.1016/j.fuproc.2004.11.002

P. Benjumea, J. Agudelo, A. Agudelo. “Basic properties of palm oil biodiesel diesel blends”. Fuel. Vol. 87. 2008. pp. 2069-2075. DOI: https://doi.org/10.1016/j.fuel.2007.11.004

R. C. Reid, J. M. Prausnitz, B. R. Poling. Properties of gases and liquids. 5a ed. Ed. McGraw Hill. 1986. pp. 3.6-3.8, 4.35-4.38, 7.19-7.24,10.12.

R. E. Tate, K. C. Watts, C. A. W Allen, K. I. Wilkie. “The densities of three biodiesel fuels at temperatures up to 300ºC”. Fuel. Vol. 85. 2006. pp. 1004-9. DOI: https://doi.org/10.1016/j.fuel.2005.10.024

J. Wei. Product Engineering: Molecular Structure and Properties. Ed. Oxford University Press. 2007. pp. 72- 124. DOI: https://doi.org/10.1093/oso/9780195159172.003.0017

G. W. Castellan. Physical Chemistry. 3a. ed. Ed. Addison-Wesley Publishing Company. New York. 1983. pp. 85-90.

G. Waddington, S. S. Todd, H. M. Huffman. “An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane”. Journal of the American Chemical Society. Vol. 69. 1947. pp. 22-30. DOI: https://doi.org/10.1021/ja01193a007

Nist Chemistry Webbook. http://webbook.nist.gov/chemistry/. Consultada el 17 de abril de 2009.

D. Goodwin. Cantera, object-oriented software for reacting flows. http://www.cantera.org. Consultada el 20 abril de 2009.

B. J. McBride, S Gordon. Computer program for calculation of complex chemical equilibrium compositions and applications. “Lewis Research Center, National Aeronautics and Space Administration”. Vol. 177. 1996.

Published

2013-02-28

How to Cite

Botero, M. L., & Molina, A. (2013). Simulation of the evaporation of drops from palm and castor oil biodiesels based on physical properties. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 40–48. https://doi.org/10.17533/udea.redin.14651