A simplified evaluation of the reduced kernel to solve the radiation problem of a cylindrical antenna

Authors

  • Carlos Iván Páez Rueda Pontifical Xavierian University

DOI:

https://doi.org/10.17533/udea.redin.14659

Keywords:

method of moments, pocklington equation, reduced kernel

Abstract

This paper presents simplified expressions regarding the radiation problem of a cylindrical straight antenna using the method of moments with the so-called reduced kernel or approximate.

|Abstract
= 112 veces | PDF (ESPAÑOL (ESPAÑA))
= 46 veces|

Downloads

Download data is not yet available.

Author Biography

Carlos Iván Páez Rueda, Pontifical Xavierian University

Department of Electronics, Faculty of Engineering.

References

R. W. P. King. “The linear antenna—Eighty years of progress”. Proceedings of the IEEE. Vol. 55. 1967. pp. 2-16. DOI: https://doi.org/10.1109/PROC.1967.5373

H. C. Pocklington. “Electrical oscillations in wires”. Proceedings of the Cambridge Philosophical Society. Vol. 9. 1897. pp. 324-332.

J. H. Richmond. «Digital computer solutions of the rigorous equations for scattering problems». Proceedings of the IEEE. Vol. 53. 1965. pp. 796-804. DOI: https://doi.org/10.1109/PROC.1965.4057

R. F. Harrington. “Matrix methods for field problems”. Proceedings of the IEEE. Vol. 55. 1967. pp. 136-149. DOI: https://doi.org/10.1109/PROC.1967.5433

C. Butler. “Evaluation of potential integral at singularity of exact kernel in thin-wire calculations”. IEEE Transactions on Antennas and Propagation. Vol. 23. 1975. pp. 293-295. DOI: https://doi.org/10.1109/TAP.1975.1141028

L. Pearson. “A separation of the logarithmic singularity in the exact kernel of the cylindrical antenna integral equation”. Antennas and Propagation, IEEE Transactions on. Vol. 23. 1975. pp. 256-258. DOI: https://doi.org/10.1109/TAP.1975.1141048

C. M. Butler, D. R. Wilton. “Effective methods for solving integral and integro-differential equations”. Moment Methods in Antennas and Scattering. R. C. Hansen. (editor). Artech House. Boston (MA). 1990. pp. 58-77.

D. H. Werner, J. A. Huffman, P. L. Werner. “Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel”. IEEE Transactions on Antennas and Propagation. Vol. 42. 1994. pp.1549-1553. DOI: https://doi.org/10.1109/8.362781

A. Karwowski. “Closed-form approximation to the bounded part of the exact kernel of a cylindrical antenna integral equation”. Microwaves, Antennas and Propagation, IEE Proceedings H. Vol. 135. 1988. pp. 210-212. DOI: https://doi.org/10.1049/ip-h-2.1988.0043

D. H. Werner, P. L. Werner, J. K. Breakall. “Some computational aspects of Pocklington’s electric field integral equation for thin wires”. IEEE Transactions on Antennas and Propagation. Vol. 42. 1994. pp. 561- 563. DOI: https://doi.org/10.1109/8.286230

Seong-Ook Park, Ke-Young Park. “Integral transform technique of self-term wire antenna kernel”. Antennas, Propagation and EM Theory, 2000. Proceedings. ISAPE 2000. pp. 358-361. DOI: https://doi.org/10.1109/ISAPE.2000.894798

M. C. van Beurden, A. G. Tijhuis. “Analysis and Regularization of the Thin-Wire Integral Equation With Reduced Kernel”. IEEE Transactions on Antennas and Propagation. Vol. 55. 2007. pp. 120-129. DOI: https://doi.org/10.1109/TAP.2006.888407

A. Mohan, D. S. Weile. “Convergence Properties of Higher Order Modeling of the Cylindrical Wire Kernel”. IEEE Transactions on Antennas and Propagation. Vol. 55. 2007. pp. 1318-1324. DOI: https://doi.org/10.1109/TAP.2007.895628

W. X. Wang. “The exact kernel for cylindrical antenna”. IEEE Transactions on Antennas and Propagation. Vol. 39. 1991. pp. 434-435. DOI: https://doi.org/10.1109/8.81454

D. H. Werner. “An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius”. IEEE Transactions on Antennas and Propagation. Vol. 41. 1993. pp. 1009-1018. DOI: https://doi.org/10.1109/8.244641

D. H. Werner, P. L. Werner, J. A. Huffman, A. J. Ferraro, J. K. Breakall. “An exact solution of the generalized exponential integral and its application to moment method formulations”. IEEE Transactions on Antennas and Propagation. Vol. 41. 1993. pp. 1716- 1719. DOI: https://doi.org/10.1109/8.273316

D. H. Werner. “A method of moments approach for the efficient and accurate modeling of moderately thick cylindrical wire antennas”. IEEE Transactions on Antennas and Propagation. Vol. 46. 1998. pp. 373- 382. DOI: https://doi.org/10.1109/8.662656

Seong-Ook Park, C.A. Balanis. “Efficient kernel calculation of cylindrical antennas”. IEEE Transactions on Antennas and Propagation. Vol. 43. 1995. pp.1328- 1331. DOI: https://doi.org/10.1109/8.475108

Chan-Ping Lim, Le-Wei Li, Er-Ping Li. “Fast fullwave analysis of a cylindrical antenna using a single integral with an exact kernel”. Antennas and Wireless Propagation Letters IEEE . Vol. 1. 2002. pp. 43-45. DOI: https://doi.org/10.1109/LAWP.2002.802578

C. Harrison Jr, E. Aronson. “On the evaluation of potential intergrals occurring in antenna theory using digital computers”. IEEE Transactions on Antennas and Propagation. Vol. 15. 1967. pp. 576-576. DOI: https://doi.org/10.1109/TAP.1967.1138960

D. R. Wilton, N. J. Champagne. “Evaluation and integration of the thin wire kernel”. IEEE Transactions on Antennas and Propagation. Vol. 54. 2006. pp. 1200- 1206. DOI: https://doi.org/10.1109/TAP.2005.872569

N. J. Champagne. D. R. Wilton. J. D. Rockway. “TheAnalysis of Thin Wires Using Higher Order Elements and Basis Functions”. IEEE Transactions on Antennas and Propagation. Vol. 54. 2006. pp. 3815-3821. DOI: https://doi.org/10.1109/TAP.2006.886538

D. R. Wilton. N. J. Champagne. “Evaluating thegradient of the thin wire kernel”. Antennas and Propagation Society International Symposium. 2008. AP-S 2008. IEEE . 2008. pp. 1-11. DOI: https://doi.org/10.1109/APS.2008.4619511

P. W. Fink, D. R. Wilton, M. A. Khayat. “Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals”. Antennas and Wireless Propagation Letters. IEEE. Vol. 7. 2008. pp. 469-472. DOI: https://doi.org/10.1109/LAWP.2008.2000788

N. J. Champagne, D. R. Wilton. “Integrating the gradient of the thin wire kernel”. Antennas and Propagation Society International Symposium. 2008. AP-S 2008. IEEE. 2008. pp. 1-11. DOI: https://doi.org/10.1109/APS.2008.4619514

W. L. Stutzman, G. A. Thiele. Antenna theory and design. 2a. ed. Ed. Wiley. New York. 1998. pp. 437- 438.

Published

2013-02-28

How to Cite

Páez Rueda, C. I. (2013). A simplified evaluation of the reduced kernel to solve the radiation problem of a cylindrical antenna. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 122–129. https://doi.org/10.17533/udea.redin.14659