Automatic selection of parameters in LLE

Authors

  • Juliana Valencia Aguirre National University of Colombia
  • Andrés Marino Álvarez Meza National University of Colombia
  • Genaro Daza Santacoloma National University of Colombia
  • Carlos Daniel Acosta Medina National University of Colombia
  • Germán Castellanos Domínguez National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.14665

Keywords:

dimensionality reduction, locally linear embedding, number of nearest neighbors, automatic regularization

Abstract

Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction technique, which preserves the local geometry of high dimensional space performing an embedding to low dimensional space. LLE algorithm has 3 free parameters that must be set to calculate the embedding: the number of nearest neighbors k, the output space dimensionality m and the regularization parameter a. The last one only is necessary when the value of k is greater than the dimensionality of input space or data are not located in general position, and it plays an important role in the embedding results. In this paper we propose a pair of criteria to find the optimum value for the parameters kand a, to obtain an embedding that faithfully represent the input data space. Our approaches are tested on 2 artificial data sets and 2 real world data sets to verify the effectiveness of the proposed criteria, besides the results are compared against methods found in the state of art.

|Abstract
= 126 veces | PDF (ESPAÑOL (ESPAÑA))
= 44 veces|

Downloads

Download data is not yet available.

Author Biographies

Juliana Valencia Aguirre, National University of Colombia

Manizales headquarters. Digital Signal Processing and Control Group.

Andrés Marino Álvarez Meza, National University of Colombia

Manizales headquarters. Digital Signal Processing and Control Group.

Genaro Daza Santacoloma, National University of Colombia

Manizales headquarters. Digital Signal Processing and Control Group.

Carlos Daniel Acosta Medina, National University of Colombia

Manizales headquarters. Digital Signal Processing and Control Group.

Germán Castellanos Domínguez, National University of Colombia

Manizales headquarters. Digital Signal Processing and Control Group.

References

M. A. Carreira-Perpiñan. “A review of dimension reduction techniques”. Department of Computer Science. University of Sheffield. Tech. Rep. CS-96-09. 1997. pp 1-69.

S. T. Roweis, L. K. Saul. “Nonlinear dimensionality reduction by locally linear embedding”. Science. Vol. 290. 2000. pp. 2323-2326. DOI: https://doi.org/10.1126/science.290.5500.2323

L. K. Saul, S. T. Roweis. “An introduction to locally linear embedding”. AT&T Labs and Gatsby Computational Neuroscience Unit. Tech. Rep. 2000. pp 1-16.

L. K. Saul, S. T. Roweis. “Think globally, fit locally: Unsupervised learning of low dimensional manifolds”. Machine Learning Research. Vol. 4. 2003. pp. 119- 155.

M. Polito, P. Perona. “Grouping and dimensionality reduction by locally linear embedding”. NIPS. Vol. 14. 2001. pp. 1255-1262.

D. de Ridder, R. P. W. Duin. Locally linear embedding for classification. Pattern Recongnition Group. Delft University of Technology. Netherlands. Tech. Rep. 2002. pp. 1-15.

P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM. Philadelphia. 1998. DOI: https://doi.org/10.1137/1.9780898719697

Y. Goldberg, Y. Ritov. “Local procrustes for manifold embedding: a measure of embedding quality and embedding algorithms”. Machine learning. Vol. 77. 2009. pp 1-25. DOI: https://doi.org/10.1007/s10994-009-5107-9

O. Kouropteva, O. Okun, M. Pietikäinen. Selection of the optimal parameter value for the locally linear embedding algorithm. The 1st ICFSKD. 2002. pp. 359-363.

S. A. Nene, S. K. Nayar, H. Murase. Columbia object image library: Coil-100. Department of Computer Science, Columbia University. NY.Tech. Rep. 1996. pp. 1-16.

A. Tank. Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int. Jour. Climatology. Vol. 22. 2002. pp. 1441-1453. DOI: https://doi.org/10.1002/joc.773

Published

2013-02-28

How to Cite

Valencia Aguirre, J., Álvarez Meza, A. M., Daza Santacoloma, G., Acosta Medina, C. D., & Castellanos Domínguez, G. (2013). Automatic selection of parameters in LLE. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 170–181. https://doi.org/10.17533/udea.redin.14665

Most read articles by the same author(s)