Change of degree of containment in a multidimensional model

Authors

  • Francisco Moreno National University of Colombia
  • Iván Amón Pontifical Bolivarian University
  • Fernando Arango National University of Colombia

Keywords:

multidimensional models, data warehouses, full containment, partial containment, temporality

Abstract

Data warehouses are usually modelled in a multidimensional way. The multidimensional models have dimensions composed by hierarchically organized levels according to their full containment. For example, in a geographical dimension with Department and Country levels, a department is fully contained into one country. Recently, a generalization of full containment has been proposed. It is known as the partial containment. For example, only a 20% of a highway could be contained into a department. In this paper we adopt a multidimensional model that supports partial containment. Our main contribution is to extend this model in order to support the change of the percentage of containment, because the percentage can change over time. To the best of our knowledge, this topic has not been examined in previous works. Our extension is also incorporated into a multidimensional query language, which enables what-if analysis in order to help decision-makers. In order to illustrate the improvements of our proposal, we present a study case related to car accidents.

|Abstract
= 155 veces | PDF (ESPAÑOL (ESPAÑA))
= 49 veces|

Downloads

Download data is not yet available.

Author Biographies

Francisco Moreno, National University of Colombia

Systems School.

Iván Amón, Pontifical Bolivarian University

GIDATI research group.

Fernando Arango, National University of Colombia

Systems School.

References

R. Agrawal, A. Gupta, S. Sarawagi. “Modeling Multidimensional Databases”. 13th International Conference on Data Engineering (ICDE’97). Birmingham. Inglaterra. 1997. pp. 232-243.

M. Gyssens, L. Lakshmanan. “A Foundation for Multi-dimensional Databases”. 23rd International Conference on Very Large Data Bases (VLDB’97). Atenas. Grecia. 1997. pp. 106-115.

P. Vassiliadis. “Modeling Multidimensional Databases, Cubes and Cube Operations”. 10th International Conference on Scientific and Statistical Database Management (SSDBM’98). Capri. Italia. 1998. pp. 53- 62.

M. Golfarelli, S. Rizzi. “A Methodological Framework for Data Warehouse Design”. 1st ACM International Workshop on Data Warehousing and OLAP (DOLAP’98). Washington D.C. Estados Unidos. 1998. pp. 3-9.

W. Lehner, J. Albrecht, H. Wedekind. “Normal Forms for Multidimensional Databases”. 10th International Conference on Scientific and Statistical Database Management (SSDBM’98). Capri. Italia. 1998. pp. 63- 72.

T. B. Pedersen, C. S. Jensen, C. E. Dyreson. “A Foundation for Capturing and Querying Complex Multidimensional Data”. Information Systems. Vol. 26. 2001. pp. 383-423.

C. S. Jensen, A. Kligys, T. B. Pedersen, I. Timko. “Multidimensional Data Modeling for Location-based Services”. 10th ACM International Symposium on Advances in Geographic Information Systems (GIS 2002). McLean. USA. 2002. pp. 55-61.

I. Timko, C. E. Dyreson, T. B. Pedersen. “Probabilistic Data Modeling and Querying for Location-based Data Warehouses”. 17th International Conference on Scientific and Statistical Database Management (SSDBM 2005). Santa Bárbara. USA. 2005. pp. 273- 282.

W. H. Inmon. Building the Data Warehouse. 3a. ed. Ed. John Wiley & Sons. Nueva York. USA. 2002. pp. 1-432.

R. Kimball, M. Ross. The Data Warehouse Toolkit: the Complete Guide to Dimensional Modeling. Ed. John Wiley & Sons, Nueva York. USA. 2a. ed. 2002. pp. 1-464.

E. Malinowski, E. Zimányi. Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Ed. Springer, Nueva York. USA. 2008. pp. 1-435.

R. Torlone. “Conceptual Multidimensional Models”. M. Rafanelli, Multidimensional Databases: Problems and Solutions, Ed. Idea Group Publishing, Pennsylvania. USA. 2003. pp. 69-90.

R. Freese. “Automated Lattice Drawing”. 2nd International Conference on Formal Concept Analysis (ICFCA’04). Sydney. Australia. 2004. pp. 112-127.

OLAP Council. The OLAP glossary. The OLAP Council. 1997. http://www.olapcouncil.org/research/ resrchly.htm. Consultada el 6 de Febrero de 2009.

M. Whitehorn, R. Zare, M. Pasumansky. Fast Track to MDX. 2a. ed. Ed. Springer, New York. USA. 2006. pp. 1-310.

A. Datta, H. Thomas. “The Cube Data Model: a Conceptual Model and Algebra for On-line Analytical Processing in Data Warehouses”. Decision Support Systems. Vol. 27. 1999. pp. 289-301.

Pentaho. Pentaho BI Suite Enterprise Edition. http:// www.pentaho.com. Consultada el 16 de mayo de 2009.

Microsoft. Microsoft SQL Server 2008. http://www. microsoft.com/sqlserver/2008/en/us. Consultada el 16 de mayo de 2009.

Published

2013-03-07

How to Cite

Moreno, F., Amón, I., & Arango, F. (2013). Change of degree of containment in a multidimensional model. Revista Facultad De Ingeniería Universidad De Antioquia, (53), 236–244. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14794