Parallelogram Based Method for Space Vector Pulse Width Modulation
Keywords:
index Terms, PWM, inverters, DC-AC power conversion, space vector, space vector modulation, parallelogramAbstract
This paper presents a parallelogram based duty cycle computation method for space vector modulation control using standard pulse width modulation circuitry. This technique maps the voltage source inverter's solution space into only three parallelogram shaped zones and reduces the computational load. The proposed modulation methods are especially suited for a description of the voltage space vector in its α, β components and for modern and high dynamic applications, where demand changes may happen at a frequency comparable with the modulator carrier frequency. Several modulation methods used in scalar applications and extensively studied in the literature are easily obtained by combining the use of the modulation methods proposed in this work. The proposed methods have been validated by simulations and experimental test.
Downloads
References
J. Zubek, A. Abbondanti, C. J. Norby. “Pulsewidth modulated inverter motor drives with improved modulation”. IEEE Trans. Ind. Applicat. Vol. 11. 1975. pp. 695-703.
G. B. Kliman, A. B. Plunkett. “Development of a modulation strategy for a PWM inverter drive”. IEEE Trans. Ind. Applicat. Vol. 15. 1979. pp. 72-79.
M. A. Boost, P. D. Ziogas. “State-of-the-art carrier PWM techniques: A critical evaluation”. IEEE Trans. Ind. Applicat. Vol. 24. 1988. pp. 271-280.
J. Holtz. “Pulsewidth modulation-a survey”. IEEE Trans. Ind. Electron. Vol. 39. 1992. pp. 410-420.
J. Holtz. “Pulsewidth modulation for electronic power conversion”. Proceedings of the IEEE. Vol. 82. 1994. pp. 1194-1214.
D. Chung, J. Kim, S. Sul. “Unified voltage modulation technique for real-time three-phase power conversion”. IEEE Trans. Ind. Applicat. Vol. 34. 1998. pp. 374-380.
D. Casadei, D. Dujic, E. Levi, G. Serra, A. Tani, L. Zarri. “General modulation strategy for seven-phase inverters with independent control of multiple voltage space vectors”. IEEE Trans. Ind. Electron. Vol. 55. 2008. pp. 1921-1932.
H. V. der Broeck, H. Skudelny, G. Stanke. “Analysis and realization of a pulsewidth modulator based on voltage space vectors”. IEEE Trans. Ind. Applicat. Vol. 24. 1988. pp. 142-150.
A. M. Trzynadlowski, R. L. Kirlin, S. F. Legowski. “Space vector PWM technique with minimum switching losses and a variable pulse rate”. IEEE Trans. Ind. Electron.Vol. 44. 1997. pp. 173-181.
V. Blasko. “Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods”. IEEE Trans. Ind. Applicat. Vol. 33. 1997. pp. 756-764.
A. M. Hava, R. J. Kerkman, T. A. Lipo. “Carrierbased PWM-VSI overmodulation strategies: Analysis, comparison, and design”. IEEE Trans. Power Electron. Vol. 13. 1998. pp. 674-689. 1998.
A. M. Hava, R. J. Kerkman, T. A. Lipo. “Simple analytical and graphical methods for carrier-based PWM-VSI drives”. IEEE Trans. Power Electron. 1999. Vol. 14. pp. 49-61.
J. Youm, B. Kwon. “An effective software implementation of the space-vector modulation”. IEEE Trans. Ind. Electron. Vol. 46. 1999. pp. 866-868.
G. Narayanan, V. T. Ranganathan. “Extension of operation of space vector PWM strategies with low switching frequencies using different overmodulation algorithms”. IEEE Trans. Power Electron. Vol. 17. 2002. pp. 788-798.
L. Hao, X. Xiangning, X. Yonghai. “Study on the simplified algorithm of space vector PWM”. Proc. IEEE Fifth International Conference on Power Electronics and Drive Systems (PEDS 2003). Singapore. 2003. pp. 877-881.
M. A. Jabbar, A. M. Khambadkone, Z. Yanfeng. “Space-vector modulation in a two-phase induction motor drive for constant-power operation”. IEEE Trans. Ind. Electron. Vol. 51. 2004. pp. 1081-1088.
S. de Pablo, A. B. Rey, L. C. Herrero, J. M. Ruiz. “A simpler and faster method for SVM implementation”. Proceedings of the 2007 European Conference on Power Electronics and Applications. EPE 2007. pp. P1-P9.
G. Narayanan, D. Zhao, H. K. Krishnamurthy, R. Ayyanar, V. T. Ranganathan. “Space vector based hybrid PWM techniques for reduced current ripple”. IEEE Trans. Ind. Electron. Vol. 55. 2008. pp. 1614- 1627.
Z. Shu, J. Tang, Y. Guo, J. Lian. “An efficient SVPWM algorithm with low computational overhead for threephase inverters”. IEEE Trans. Power Electron. Vol. 22. 2007. pp. 1797-1805.
Z. Peroutka, T. Glasberger. “Comparison of methods for continuous transition of space vector PWM into six-step mode”. Proceedings of the 12th international conference on power electronics and motion control EPE-PEMC 2006. Portoroz. Slovenia. 2006. pp. 925- 930.
G. Narayanan, V. T. Ranganathan. “Trianglecomparison approach and space vector approach to pulsewidth modulation in inverter fed drives”. Journal of the Indian Institute of Science. Vol. 80. 2000. pp. 409-427.
D. Dujic, G. Grandi, M. Jones, E. Levi. “A space vector PWM scheme for multifrequency output voltage generation with multiphase voltage-source inverters”. IEEE Trans. Ind. Electron. Vol. 55. 2008. pp. 1943- 1955.
A. M. Hava, S. Sul, R. J. Kerkman, T. A. Lipo. “Dynamic overmodulation characteristics of triangle intersection PWM methods”. IEEE Trans. Ind. Applicat. Vol. 35. 1999. pp. 896-907.
H. Lu, W. Qu, X. Cheng, Y. Fan, X. Zhang. “A novel PWM technique with two-phase modulation”. IEEE Trans. Power Electron. Vol. 22. 2007. pp. 2403-2409.
K. Zhou, D. Wang. “Relationship between spacevector modulation and three-phase carrier-based PWM: A comprehensive analysis”. IEEE Trans. Ind. Electron. Vol. 49. 2002. pp. 186-196.
A. M. Hava, R. J. Kerkman, T. A. Lipo. “A highperformance generalized discontinuous pwm algorithm”. IEEE Trans. Ind. Applicat. Vol. 34. 1998. pp. 1059-1071.
J. Restrepo, M. I. Giménez, V. Guzmán, J. M. Aller, A. Bueno, A. Millán. “PLATFORM III: A new version for the integrated test system for AC machine drives performance analysis”. Proceedings of the Fourth International Caracas Conference on Devices, Circuits and Systems. 2002. pp. 1036(1)-1036(6).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.