Electrostatic tip-dielectric sample interaction in electrostatic force microscopy
DOI:
https://doi.org/10.17533/udea.redin.14929Keywords:
Electrostatics, charge induction, force gradient, AFM, EFM, electret, cantileverAbstract
Electric force microscopy is a local technique for measuring electrical properties of materials. The electrostatic force gradient measurements on dielectric samples are sensitive not only to the initial charge distribution in the sample but also to the charge induced by the conductive bias cantilever. Interpreting the contribution of each single effect on the charge distribution images is a challenge in the existing EFM technique. Here, a theoretical model is introduced to study the charge and induction effect on charged dielectric samples and commercial geometries for EFM tips. This model estimates the initial charge of the sample based on force gradient measurements. Gradient force results reproduce experimental measurements performed on electrets samples.
Downloads
References
F. J. Giessibl. “Theory of electric force microscopy in the parametric amplification regime”. Physical Review B. Vol. 71. 2005. pp. 1-12. DOI: https://doi.org/10.1103/PhysRevB.71.205404
K. L. Sorokina, A. L. Tolstikhina. “Atomic Force Microscopy Modified for Studying Electric Properties of Thin Films and Crystals. Review”. Crystallography Reports. Vol. 49. 2004. pp. 476–499. DOI: https://doi.org/10.1134/1.1756648
M. S. Crosser, S. H. Tessmer, R. N. Ghosh. “Scanning Electric Field Sensing for semiconductor dopant profiling”. Applied Surface Science. Vol. 195. 2002. pp. 146-154. DOI: https://doi.org/10.1016/S0169-4332(02)00538-X
B. Bharat (Editor). Springer Handbook of Nanotechnology. 2a ed. Ed. Springer-Verlag. Heildelberg. 2007. pp. 325-385.
J. Kim, W. Jasper, J. Hinestroza. “Direct probing of solvent-induced charge degradation in polypropylene electret fibres via electrostatic force microscopy”. Journal of Microscopy, Vol. 225. 2007. pp. 72-79. DOI: https://doi.org/10.1111/j.1365-2818.2007.01716.x
G. M. Sacha, J. J. Sáenz. “Cantilever effects on electrostatic force gradient microscopy”. Applied Physics Letters. Vol. 85. 2004. pp. 2610-2612. DOI: https://doi.org/10.1063/1.1797539
G. M. Sacha, C. Gómez Navarro, J. J. Sáenz, J. Gómez Herrero. “Quantitative theory for the imaging of conducting objects in electrostatic force microscopy”. Applied Physics Letters. Vol. 89. 2006. pp. 173122- 173125. DOI: https://doi.org/10.1063/1.2364862
S Gómez Moñivas, L. S. Froufe, R. Carminati, J. J. Greffet, J. J. Saenz. “ Tip-shape effects on electrostatic force microscopy resolution”. Nanotechnology. Vol. 12. 2001. pp. 496-499. DOI: https://doi.org/10.1088/0957-4484/12/4/323
S. Gómez Moñivas, L. S. Froufe Pérez, A. J. Caamaño, J. J. Sáenz. “Electrostatic forces between sharp tips and metallic and dielectric samples”. Applied Physics Letters. Vol. 79. 2001. pp 4048-4050. DOI: https://doi.org/10.1063/1.1424478
W. J. Jasper, A. Mohan, J. Hinestroza, R. Barker. “Degradation Processes in Corona-Charged Electret Filter-Media with Exposure to Ethyl Benzene”. Journal of Engineered Fibers and Fabrics. Vol. 2. 2007. pp 1-6. DOI: https://doi.org/10.1177/155892500700200401
J. Colchero, A. Gil, A. M. Baro. “Resolution enhancement and improved data interpretation in electrostatic force microscopy”. Physical Review B. Vol 64. 2001. pp 245403.1-245403.11. DOI: https://doi.org/10.1103/PhysRevB.64.245403
Mikromasch Corporation. Probe Catalog. http://www.spmtips.com/spm_probes/ Consultada el 15 de abril de 2008.
D. J. Griffiths. Introduction to Electrodynamics. Ed. Prentice-Hall Inc. New Jersey. 1999. pp.1-193.
G. Téllez. Métodos Matemáticos, Universidad de los Andes, Dpto. de Física. 2002, pp. 135-174.
Veeco Corporation, AFM Probes. https://www. ve e coprobe s .com/ s e a r ch. a sp?GroupID=42. Consultada el 20 de abril de 2008.
J. A. Małecki. “Linear decay of charge in electrets”. Physical Review B. Vol. 59. 1999. pp. 9954-9960. DOI: https://doi.org/10.1103/PhysRevB.59.9954
J. E. J. Dalley, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. H. Kaye. “Measurement of the charge of airborne 3–10 m spherical dielectric particles charged in an AC unipolar charger”. Journal of Aerosol Science. Vol. 36. 2005. pp. 1194-1209. DOI: https://doi.org/10.1016/j.jaerosci.2005.02.008
A. Gómez. Estudio de la interacción punta-muestra dieléctrica en microscopios de fuerza atómica. Trabajo de Pregrado. Ingeniería electrónica. Universidad de los Andes. 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.