Modelling of breakthrough curve in water adsorption on silica gel and zeolite 4A

Authors

  • Andrés Rivera Guerrero National University of Colombia https://orcid.org/0000-0002-6043-2476
  • Gerardo Rodríguez Niño National University of Colombia
  • Pedro Bejarano Jiménez National University of Colombia

DOI:

https://doi.org/10.17533/udea.redin.15316

Keywords:

simulation, adsorption isotherm, breakthrough curve, adsorbents, fixed bed, water adsorption

Abstract

This  paper  presents  the  development  of  a  computational  model  to  simulate  the adsorption of water in a fixed bed, comparing the performance of zeolite 4A and silica gel type ‘A’. A variation of the Langmuir isotherm for zeolite 4A and Tóth isotherm for the silica gel were used; Linear Driving Force (LDF) model was used for adsorption rate with an overall coefficient temperature dependent.  The  model  is  composed  of  five  partial  differential  equations associated  with  mole  fraction  of  water,  temperature,  pressure,  superficial velocity  and  water  loading.  Method  of  lines  (MOL)  was  used  with  the  function ODE15S of Matlab® to solve the system. As response variables the characteristic time interval of the breakthrough curve, asymmetry, maximum temperature  and  pressure  drop,  through  a  two-level  factorial  scheme  were  evaluated.  Adsorbent  was  the  most  influential  variable  on  the  response variables.  Zeolite  has  the  highest  rate  of  adsorption  due  to  the  shape  of  the  adsorption  isotherm,  but  has  a  lower  water  retention  loading  and  increased  resistance to mass transfer.

|Abstract
= 346 veces | PDF (ESPAÑOL (ESPAÑA))
= 226 veces|

Downloads

Download data is not yet available.

Author Biographies

Andrés Rivera Guerrero, National University of Colombia

Faculty of Engineering - Department of Chemical and Environmental Engineering - Chemical and Biochemical Processes Research Group.

Gerardo Rodríguez Niño, National University of Colombia

Faculty of Engineering - Department of Chemical and Environmental Engineering - Chemical and Biochemical Processes Research Group. Associate professor.

Pedro Bejarano Jiménez, National University of Colombia

Faculty of Engineering - Department of Chemical and Environmental Engineering - Chemical and Biochemical Processes Research Group. Assistant teacher.

References

M. Simo, C. Brown, V. Hlavacek. “Simulation of Presure Swing Adsorption in Fuel Ethanol Production Process”. Comput. Chem. Eng. Vol. 32. 2008. pp. 1635-1649. DOI: https://doi.org/10.1016/j.compchemeng.2007.07.011

D. Ruthven. Principles of Adsorption and Adsorption Processes. 1st ed. Ed. John Wiley & Sons, Inc. New York, USA. 1984. pp. 1-433.

D. Ruthven, S. Farooq, K. Knaebel. Pressure Swing Adsorption. 1st ed. Ed. VCH Publishers, Inc. New York, USA. 1994. pp. 1-352.

M. LeVan, G. Carta, C. Yon. “Adsorption and Ion Exchange”. R. Perry, D. Green. (editors). Perry’s Chemical Engineers’ Handbook. 7a ed. Ed. McGraw-Hill. New York, USA. 1997. pp. 1-66.

A. Ribeiro, T. Sauer, C. Grande, R. Moreira, J. Loureiro, A. Rodrigues. “Adsorption Equilibrium and Kinetics of Water Vapor on Different Adsorbents”. Ind. Eng. Chem. Res. Vol. 47. 2008. pp. 7019-7026. DOI: https://doi.org/10.1021/ie701732x

X. Wang, H. Chua. “Two Bed Silica Gel –Water adsorption chillers: An effectual lumped parameter model”. Int. J. Refrigeration. Vol. 30. 2007. pp. 1417-1426. DOI: https://doi.org/10.1016/j.ijrefrig.2007.03.010

A. Gorbach, M. Stegmaier, G. Eigenberger. “Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A-Equilibria and Kinetics”. Adsorption. Vol. 10. 2004. pp. 29-46. DOI: https://doi.org/10.1023/B:ADSO.0000024033.60103.ff

M. Gholami, M. Talaie. “Investigation of Simplifying Assumptions in Mathematical Modeling of Natural Gas Dehydration Using Adsorption Process and Introduction of a New Accurate LDF Model”. Ind. Eng. Chem. Res. Vol. 49. 2010. pp. 838-846. DOI: https://doi.org/10.1021/ie901183q

X. Wang, W. Zimmermann, K. Ng, A. Charraboty, J. Keller. “Investigation on the isotherm of silica gel+water systems TG and volumetric methods”. J. Therm. Anal. Calorim. Vol. 76. 2004. pp. 659-669. DOI: https://doi.org/10.1023/B:JTAN.0000028045.96239.7e

I. Park, K. Knaebel. “Adsorption breakthrough behavior: Unusual effects and possible causes”. AIChE J. Vol. 38. 1992. pp. 660-670. DOI: https://doi.org/10.1002/aic.690380504

M. Simo, S. Sivashanmugam, C. Brown, V. Hlavacek. “Adsorption/Desorption of Water and Ethanol on 3A Zeolite in Near-Adiabatic Fixed Bed”. Ind. Eng. Chem. Res. Vol. 48. 2009. pp. 9247-9260. DOI: https://doi.org/10.1021/ie900446v

R. Yang. Adsorbents: Fundamentals and applications. 1st ed. Ed. John Wiley & Sons, Inc. New Jersey, USA. 2003. pp. 1-410.

J. Seader, J. Siirola, S. Barnicki. “Distillation”.

R. Perry, D. Green. (editores). Perry’s Chemical Engineers’ Handbook. 7a ed. Ed. McGraw-Hill. New York, USA. 1997. pp. 1 108.

S. Sircar, J. Hufton. “Why Does the Linear Driving Force Model for Adsorption Kinetics Work?”. Adsorption. Vol. 6. 2000. pp. 137-147. DOI: https://doi.org/10.1023/A:1008965317983

D. Lide. CRC Handbook of Chemistry and Physics. 90a ed. Ed. CRC Press/Taylor and Francis. Boca Raton, USA. 2010. Version CD-ROM.

Y. Liu, J. Delgado, J. Ritter. “Comparison of Finite Difference Techniques for Simulating Pressure Swing Adsorption”. Adsorption. Vol. 4. 1998. pp. 337-344. DOI: https://doi.org/10.1023/A:1008898019954

W. Schiesser. The numerical Method of Lines. 1st ed. Ed. Academic Press. San Diego, USA. 1991. pp. 1-326.

M. Gwadera, K. Kupiec, J. Rakoczy. “Investigation of Thermal Effects of Water Vapor Adsorption on Zeolites”. Technical transactions: Mechanics. Vol.109. 2012. pp. 87-94.

Published

2014-02-12

How to Cite

Rivera Guerrero, A., Rodríguez Niño, G., & Bejarano Jiménez, P. . (2014). Modelling of breakthrough curve in water adsorption on silica gel and zeolite 4A. Revista Facultad De Ingeniería Universidad De Antioquia, 71(71), 179–190. https://doi.org/10.17533/udea.redin.15316