Molecular states of laterally coupled quantum dots under electric fields

Authors

  • Carlos Teofilo Corredor Industrial University of Santander
  • Willian Gutiérrez Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.redin.15984

Keywords:

artificial molecule, two laterally coupled quantum dots, one electron energy spectrum, molecular states, wavelength-tunable single-photon emitter

Abstract

The states of a single electron trapped in two laterally coupled quantum dots are studied theoretically in the framework of the effective mass and envelope function approximations.  The electron tunneling between dots is studied by varying of inter-dot distance and we showed that the lateral quantum coupling between  them  allows  the  formation  of  molecular-like  states,  which  exhibit  similar  characteristics  to  those  of  a  molecule  H2+.  The  effect  of  an  in-plane  electric field on the energy spectrum is analyzed and our results reveal that the wavelength of photons emitted from the system can be tuned by simply applying a low-intensity electric field.  This latter feature is consistent with experimental observations.

|Abstract
= 133 veces | PDF
= 61 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Teofilo Corredor, Industrial University of Santander

School of Physics.

Willian Gutiérrez, Industrial University of Santander

School of Physics.

References

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann. “Photoluminescence From a Single GaAs/AlGaAs Quantum Dot”. Physical Review Letters. Vol. 69. 1992. pp. 3216-3219. DOI: https://doi.org/10.1103/PhysRevLett.69.3216

J. Marzin, J. Gérard, A. Izraël, D. Barrier, G. Bastard. “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”. Physical Review Letters. Vol. 73. 1994. pp. 716-719. DOI: https://doi.org/10.1103/PhysRevLett.73.716

R. Ashoori. “Electrons in Artificial Atoms”. Nature. Vol. 379. 1996. pp. 413-419. DOI: https://doi.org/10.1038/379413a0

L. Kouwenhoven. “Coupled Quantum Dots as Artificial Molecules”. Science. Vol. 268. 1995. pp. 1440. DOI: https://doi.org/10.1126/science.268.5216.1440

G. Schedelbeck, W. Wegscheider, M. Bichler, G. Abstreiter. “Coupled Quantum Dots Fabricated by Cleaved Edge Overgrowth: From Artificial Atoms to Molecules”. Science. Vol. 278. 1997. pp. 1792-1795. DOI: https://doi.org/10.1126/science.278.5344.1792

M. Pioro, M. Abolfath, P. Zawadzki, J. Lapointe, S. Studenikin, A. Sachrajda, P. Hawrylak. “Charge Sensing of an Artificial H2+ Molecule in Lateral Quantum Dots”. Physical Review B. Vol.72. 2005. pp. 1-5.

M. Korkusinski, P. Hawrylak. “Electronic Structure of Vertically Stacked Self-assembled Quantum Disks”. Physical Review B. Vol. 63. 2001. pp. 1-7. DOI: https://doi.org/10.1103/PhysRevB.63.195311

L. He, G. Bester, A. Zunger. “Electronic asymmetry in Self-assembled Quantum dot Molecules Made of Identical InAs/GaAs Quantum Dots”. Physical Review B. Vol.72. 2005. pp. 1-7. DOI: https://doi.org/10.1103/PhysRevB.72.195307

W. Gutiérrez, J. Marin, I. Mikhailov. “Charge Transfer Magnetoexciton Formation at Vertically Coupled Quantum Dots”. Nanoscale Research Letters. Vol. 7. 2012. pp. 585. DOI: https://doi.org/10.1186/1556-276X-7-585

I. Mikhailov, L. García, J. Marín. “Vertically Coupled Quantum Dots Charged by Exciton”. Microelectronics Journal. Vol. 39. 2008. pp. 378-382. DOI: https://doi.org/10.1016/j.mejo.2007.07.046

J. Planelles, J. Climente, F. Rajadell, M. Doty, A Bracker, D. Gammon. “Effect of Strain and Variable Mass on the Formation of Antibonding Hole Ground States in InAs Quantum Dot Molecules”. Physical Review B. Vol. 82. 2010. pp. 1-8. DOI: https://doi.org/10.1103/PhysRevB.82.155307

E. Muñoz, Z. Barticevic, M. Pacheco. “Electronic Spectrum of Two Coupled Semiconductor Quantum Disks Under External Fields”. Microelectronics Journal. Vol. 34. 2003. pp. 733-736. DOI: https://doi.org/10.1016/S0026-2692(03)00114-9

P. Stano, J. Fabian. “Spin-orbit Effects in Single-electron States in Coupled Quantum Dots”. Physical Review B. Vol. 72. 2005. pp. 1-14. DOI: https://doi.org/10.1103/PhysRevB.72.155410

M. Raith, P. Stano, J. Fabian. “Theory of Single Electron Spin Relaxation in Si/SiGe Lateral Coupled Quantum Dots”. Physical Review B. Vol. 83. 2011. pp. 1-9. DOI: https://doi.org/10.1103/PhysRevB.83.195318

J. Climente, J. Planelles. “Characteristic Molecular Properties of One-electron Double Quantum Rings Under Magnetic Fields”. Journal of Physics: Condensed Matter. Vol. 20. 2008. pp. 1-8. DOI: https://doi.org/10.1088/0953-8984/20/03/035212

D. Bouwmeester, A. Ekert, A. Zeilinger. The Physics of Quantum Information. 1st ed. Ed. Springer. Berlin, Germany. 2000. pp. 133-175. DOI: https://doi.org/10.1007/978-3-662-04209-0

M. Califano, P. Harrison. “Presentation and Experimental Validation of a Single-band, Constant-Potential Model for Self-assembled InAs/GaAs quantum dots”. Physical Review B. Vol. 61. 2001. pp. 10959-10965. DOI: https://doi.org/10.1103/PhysRevB.61.10959

L. Landau, E. Lifshitz. Quantum Mechanics, Non-Relativistic Theory. 3rd ed. Ed. Pergamon Press. Oxford, England. 1977. pp. 302-305.

G. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. Schmidt, P. Michler. “Quantum Light Emission of Two Lateral Tunnel-coupled (In,Ga)As/GaAs Quantum Dot controlled by a Tunable Static Electric Field”. Physical Review Letters. Vol. 96. 2006. pp. 1-4. DOI: https://doi.org/10.1103/PhysRevLett.96.137401

Downloads

Published

2014-02-12

How to Cite

Corredor, C. T., & Gutiérrez, W. (2014). Molecular states of laterally coupled quantum dots under electric fields. Revista Facultad De Ingeniería Universidad De Antioquia, 71(71), 17–24. https://doi.org/10.17533/udea.redin.15984