Methodology to obtain the linear range of a transistor as a control element in a DC current source

Authors

DOI:

https://doi.org/10.17533/udea.redin.16313

Keywords:

BJT transistor, polarization voltage, active regions, maximum power, loads resistance, direct current source, saturation voltage

Abstract

This paper presents a methodology to develop direct current sources using BJT transistors on the linear region (active region). This region depends on the saturation voltage, maximum power and polarization voltage of the element; from these parameters it is obtained the load resistance range that ensures a constant current. The methodology is used to develop a DC current source prototype of 2A and the range of the load resistance is defined by the transistor characteristics. The temperature and power constrains are taking into account.

|Abstract
= 509 veces | PDF (ESPAÑOL (ESPAÑA))
= 144 veces|

Downloads

Download data is not yet available.

Author Biographies

Esteban Velilla, University of Antioquia

Efficient Energy Management Group – GIMEL.

John Ever Muñoz, University of Antioquia

Efficient Energy Management Group – GIMEL.

Yurany A. Osorno, University of Antioquia

Efficient Energy Management Group – GIMEL.

Nelson Londoño, University of Antioquia

Efficient Energy Management Group – GIMEL.

References

L. Marshall. “Circuits and Systems Expositions on the Application of Thevenin and Norton Equivalent Circuits and Signal Flow Graphs to the Small-Signal Analysis of Active Circuits”. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application. Vol. 43. 1996. pp. 885-893. DOI: https://doi.org/10.1109/81.542279

F. Mohamed. “On Thevenin’s and Norton’s Equivalent Circuits”. IEEE Transactions on Education. Vol. 25. 1982. pp. 99-102. DOI: https://doi.org/10.1109/TE.1982.4321556

H. Zhao. Discussion on the Thevenin’s theorem and Norton’s theorem. International Conference on Electronic & Mechanical Engineering and Information Technology. Harbin, Heilongjiang, China. 2011. pp 520-522.

W. Hayt. Análisis en circuitos en ingeniería. 7th ed. Ed. McGraw-Hill. México D.F, México. 2010. pp. 131- 145.

Bruce. A. Circuitos - Ingeniería, conceptos y análisis de circuitos eléctricos lineales. Ed. Thomson Learning. México D.F, México. 2001. pp. 66-78.

R. Boylestad, L. Nashelsky. Electronic Devices and Circuit Theory. 6th ed. Ed. Prentice –Hall Inc. A Simon & Schuster Company. New Jersey, US. 1997. pp.138- 180.

H. Rashid, Electrónica de potencia: circuitos, dispositivos y aplicaciones. 2nd ed. Ed. Pearson Education. México D.F, México. 1995. pp. 267-287.

S. Erné, H. Luther. “High-Precision DC-Current Source”. IEEE Transactions on Instrumentation and Measurement. Vol. 24. 1975. pp. 345-348. DOI: https://doi.org/10.1109/TIM.1975.4314456

D. Holburn. A current source based on JFET. Departament of Engeering, University of Cambridge. Available on: http://www.eng.cam.ac.uk. Accessed: 2-May-2010.

Semiconductor Components Industries. Silicon Power Transistor. Available on: http://www.datasheetcatalog.org/datasheet2/6/0e6c74usfjslcuocssiwi9j1p4cy.pdf. Accessed: 1-Nov-2009.

Y. Osorno. Diseño e implementación de fuentes de corriente DC, para aplicaciones didácticas en el laboratorio de circuitos eléctricos. Trabajo de Grado. Universidad de Antioquia. Medellín, Colombia. 2011. pp. 51-64.

Published

2013-08-16

How to Cite

Velilla, E., Muñoz, J. E., Osorno, Y. A., & Londoño, N. (2013). Methodology to obtain the linear range of a transistor as a control element in a DC current source. Revista Facultad De Ingeniería Universidad De Antioquia, (67), 89–97. https://doi.org/10.17533/udea.redin.16313

Most read articles by the same author(s)