Phosphorus removal in different wastewater by fluidized bed airlift reactors with internal circulation
DOI:
https://doi.org/10.17533/udea.redin.16320Keywords:
aerobic reactor, fluidized bed, internal circulation, biological phosphorus removalAbstract
The wastewater discharge produces impacts on receiving water bodies. Nutrients as P produce implications on lentic systems because they accelerate the eutrophication processes. Several technologies for P removal from the wastewater have been used: physic chemical treatment systems with important effects by coagulant products addition; biological processes based on anaerobic and aerobic conditions with great implications on the required volume; natural systems as stabilization ponds and irrigation require bigger areas and post-treatment processes. The aerobic fluidized bed reactors with internal circulation (AFBRIC) are compact options with high concentrations of active biomass that have demonstrated their capacity for organic matter and N removal. For sewage from the wastewater pumping station of Ilha Solteira city and effluents of a recirculation aquaculture system (RAS) for semi-intensive tilapia farming, the reactive P and total P removal efficiency in three AFBRIC with 250 mm external tube diameter and different internal tube diameter (ITD), for two different support media at different concentrations was evaluated. The average reactive P removal efficiency for domestic wastewater to hydraulic retention time (HRT) of 3 hours and 125 mm ITD reactor varied from 25,6 to 38,4% and with 150 mm ITD reactor varied from 27,5 to 32,5%; the average total P removal for the RAS wastewater at a HRT of 0,19 hours and 100 mm ITD was of 32,7%.
Downloads
References
R. Crites, G. Tchobanoglous. Small and Decentralized Wastewater Management Systems. Ed. McGraw-Hill. New York. 1998. pp. 1084.
F. Spellman. Handbook of Water and Wastewater Treatment Plant Operations. 2nd ed. Ed. CRC Press. Boca Raton, FL. 2009. pp. 825.
C. Neto, J. Campos. Tratamento de esgotos sanitários por processo anaeróbio e disposição controlada no solo. In: J. R. Campos (Coord.). Programa de Pesquisas em Saneamento Básico - PROSAB. Ed. ABES. Rio de Janeiro. 1999. pp. 1-28.
D. Mara. Domestic Wastewater Treatment in Developing Countries. Ed. Earthscan. London. Sterling. 2004. pp. 292.
F. Spellman. Handbook of Water and Wastewater Treatment Plant Operations. 2nd ed. Ed. CRC Press. Boca Raton, FL. 2009. pp. 825.
S. Cripps, A. Bergheim. “Solids management and removal for intensive land-based aquaculture production systems”. Aquacultural Engineering. Vol. 22. 2000. pp. 33-56. DOI: https://doi.org/10.1016/S0144-8609(00)00031-5
B. True, W. Johnson, S. Chen. “Reducing phosphorus discharge from flow-through aquaculture III: assessing high- rate filtration media for effluent solids and phosphorus removal”. Aquacultural Engineering. Vol. 32. 2004. pp. 161-170.
J. MacMillan, T. Huddleston, M. Woolley, K. Fothergill. “Best management practice development to minimize environmental impact from large flowthrough trout farms”. Aquaculture. Vol. 226. 2003. pp. 91-99. DOI: https://doi.org/10.1016/S0044-8486(03)00470-8
A. Bergheim, A. Brinker. “Effluent treatment for flow through systems and European Environmental Regulations”. Aquacultural Engineering. Vol. 27. 2003. pp. 61-77. DOI: https://doi.org/10.1016/S0144-8609(02)00041-9
B. True, W. Johnson, S. Chen. “Reducing phosphorus discharge from flow-through aquaculture III: assessing high- rate filtration media for effluent solids and phosphorus removal”. Aquacultural Engineering. Vol. 32. 2004. pp. 161-170. DOI: https://doi.org/10.1016/j.aquaeng.2004.08.004
Y. Avnimelech. “Bio-filters: The need for a new comprehensive approach”. Aquacultural Engineering. Vol. 34. 2006. pp. 172-178. DOI: https://doi.org/10.1016/j.aquaeng.2005.04.001
M. Timmons, J. Ebeling. Recirculating Aquaculture. Northeastern Regional Aquaculture Center. Ithaca. NY. 2010. pp. 948.
M. von Sperling. Principios del Tratamiento Biológico de Aguas Residuales. “Introducción a la calidad del agua y al tratamiento de aguas residuales”. 1a edición en español. Vol 1. Editorial Universitaria, Universidad de Nariño. San Juan de Pasto, Colombia. 2012. pp. 468.
G.V. Levin, J. Shapiro J. “Metabolic uptake of phosphorus by wastewater organisms”. Journal of Water Pollution Control Federation. Vol. 37. 1965. pp. 800-821.
L.E. de-Bashan, Y. Bashan. “Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003)”. Water Research. Vol. 38. 2004. pp. 4222-4246. DOI: https://doi.org/10.1016/j.watres.2004.07.014
C. Cárdenas, T. Perruolo, Y. Tärre, K. Flores, A. Trujillo, L. Saules, I. Araujo, S. Yabroudi. “Remoción de nutrientes en un reactor discontinuo secuencial”. Interciencia. Vol. 31. 2006. pp. 787-793.
M. Perez, R. Dautant, A. Contreras, H. Gonzales. Remoción de fósforo y nitrógeno en aguas residuales utilizando un reactor discontinuo secuencial (SBR). In: Memorias XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Cancún. México. 27 al 31 de octubre. 2002. pp. 8.
M. von Sperling. Princípios do Tratamento Biológico de Águas Residuárias. “Lodos ativados”. 2a ed. Vol 4. Universidade Federal de Minas Gerais. Belo Horizonte, Brasil. 2002. pp. 428.
H. Nunes, J. Tavares de Sousa, B. Ovruski de Ceballos, B. Patrício. “Remoção biológica de fósforo em reatores em bateladas seqüenciais com diferentes tempos de retenção de sólidos”. Eng Sanit Ambient. Vol. 15. 2010. pp 197-204. DOI: https://doi.org/10.1590/S1413-41522010000200012
L. Lamego, R Ribeiro da Costa. “Tratamento de esgoto sanitário em reator híbrido em bateladas sequenciais: eficiência e estabilidade na remoção de matéria orgânica e nutrientes (N, P) ”. Eng. Sanit. Ambient. Vol. 16. 2011. pp. 411-420. DOI: https://doi.org/10.1590/S1413-41522011000400013
D. Patrício. Remoção biológica de matéria orgânica e nutrientes de esgotos sanitários utilizando reatores em bateladas seqüenciais. Dissertação de Mestrado de Ciência e Tecnologia Ambiental da Universidade Estadual da Paraíba. 2010. pp. 42-46.
C. Henriques, E. Foresti. Remoção biológica de fósforo em reator seqüencial em batelada tratando esgoto sanitário sintético utilizando acetato de sódio como fonte exógena de carbono. In: Memorias XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Cancún. México. 2002. pp. 7.
M. González, J. Saldarriaga. “Remoción biológica de materia orgánica, nitrógeno y fósforo en un sistema tipo anaerobio-anóxico-aerobio”. Revista EIA. Nº10. 2008. pp. 45-53.
J. Saldarriaga, D. Hoyos, M. Correa. “Evaluación de procesos biológicos unitarios en la remoción simultánea de nutrientes para minimizar la eutrofización”. Revista EIA. Nº 15. 2011. pp. 129-140.
F. Bastos, M. von Sperling. Nutrientes de esgoto sanitário: utilização e remoção. Projeto PROSAB Ed. ABES. Rio de Janeiro. Brasil. 2009. pp. 425.
A. Gieseke, P. Arnz, R. Amann, A. Schramm. “Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor and microscale investigations”. Water Research. Vol. 36. 2002. pp. 501-509. DOI: https://doi.org/10.1016/S0043-1354(01)00232-9
I. Sánchez, G. Teixeira, L. Santos, D. Gebara, M. Dall’Aglio S, T. Matsumoto. “Reactores aeróbios de lecho fluidizado trifásico con circulación interna: caracterización hidrodinámica y del soporte”. Rev. Fac. Ing. Univ. Antioquia. N° 56. 2010. pp. 68-77.
Associação Brasileira de Normas Técnicas- ABNT. NBR 7181/84: análise granulométrica: solo. Rio de Janeiro, Brasil. 1984. pp. 13.
Associação Brasileira de Normas Técnicas- ABNT. NBR 6508: Determinação da Massa Específica: Grãos de Solos que Passam na Peneira de 4,9mm. Rio de Janeiro, Brasil. 1984. pp. 8.
American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater. 20 Ed. APHA. Washington. 1998. pp. 1325. 182 Rev. Fac. Ing. Univ. Antioquia N.° 67. Junio 2013
A. Mansur. Sistemas Econômicos de Tratamento de Esgotos Sanitários. Associação Brasileira de Engenharia Sanitária e Ambiental – ABES. Rio de Janeiro, Brasil. 2000. pp. 192.
D. Mulkerrins, A.D.W. Dobson, E. Colleran. “Parameters affecting biological phosphate removal from wastewaters”. Environment International. Vol. 30. 2004. pp. 249-259. DOI: https://doi.org/10.1016/S0160-4120(03)00177-6
M. von Sperling. Princípios do Tratamento Biológico de Águas Residuárias. “Lodos ativados”. 2a ed. Vol 4. Universidade Federal de Minas Gerais. Belo Horizonte, Brasil. 2002. pp. 428.
D. Gebara. Desempenho de um reator aeróbio de leito fluidizado no tratamento de esgoto sanitário. Tese de Doutorado em Engenharia. Escola Politécnica, Universidade de São Paulo (USP). São Paulo, Brasil. 2006. pp. 402.
M. Jiang, Y. Zhang, X. Zhou, Y. Su, M. Zhang, K. Zhang. “Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state”. Bioresource Technology. Vol. 130. 2013. pp. 406-411. DOI: https://doi.org/10.1016/j.biortech.2012.11.129
S. Rybicki. Advanced Wastewater Treatment Report No 1. “Phosphorus Removal From Wastewater A Literature Review”. Division of Water Resources Engineering, Department of Civil and Environmental Engineering, Royal Institute of Technology. Stockholm, Sweden. 1997. pp. 106.
J. Davidson, N. Helwig, S. Summerfelt. “Fluidized sand bio-filters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent”. Aquacultural Engineering. Vol. 39. 2008. pp. 6-15. DOI: https://doi.org/10.1016/j.aquaeng.2008.04.002
United States Environmental Protection Agency (USEPA). Design Manual, Phosphorus Removal. Ed. Office of research and development. Cincinnati, USA. 1987. pp.1-116.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.