Parameter estimation method for induction machines using instantaneous voltage and current measurements
DOI:
https://doi.org/10.17533/udea.redin.n75a07Keywords:
parameter estimation, rotating machine transient, nonlinear estimation, induction machinesAbstract
This paper proposes an off-line method to determine the electrical parameters of an induction machine based on two instantaneous indicators (impedance and power). The method uses the induction machine start-up voltage and current measurements. Also, the proposed method employs a space vector dynamic model of the induction machine referred to the fixed stator reference frame. This model allows the representation of the instantaneous indicators in terms of the machine electrical parameters. An error function is defined using the indicators obtained from the measurements, versus the corresponding derived from the dynamic model of the machine. The estimated parameters are obtained by minimizing this error function by means of a constrained nonlinear optimization algorithm. The effectiveness of the proposed method was experimentally validated. The results from the model using the estimated parameters fit the experimental data sets with average error below 5%.
Downloads
References
IEEE. IEEE standard test procedure for polyphase induction motors and generators. IEEE Std 112. 2004. pp. 1-79.
M. Haque. “Determination of NEMA design induction motors parameters from manufacturer data”. Energy Conversion, Transactions on. Vol. 23. 2008. pp. 997- 1004.
C. Moons, B. Moor. “Parameter identification of induction motor drives”. Automatica. Vol. 31. 1995. pp. 1137-1147.
J. Stephan, M. Bodson, J. Chiasson. “Real-time estimation of the parameters and fluxes of induction motors”. Industry Applications, IEEE Transactions on. Vol. 30. 1994. pp. 746-759.
M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino. “A new experimental application of least-squares techniques for the estimation of the induction motor parameters”. Industry Applications, IEEE Transactions on. Vol. 39. 2003. pp. 1247-1256.
M. Cirrincione, M. Pucci, G. Cirrincione, G. Capolino. “Constrained minimization for parameter estimation of induction motors in saturated and unsaturated conditions”. Industrial Electronics, IEEE Transaction on. Vol. 52. 2005. pp. 1391-1402.
A. Bechouche, H. Sediki, D. Abdeslam, S. Haddad. “A novel method for identifying parameters of induction motors at standstill using ADALINE”. Energy Conversion, IEEE Transactions on. Vol. 27. 2012. pp. 105-116.
A. Yepes, J. Riveros, J. Doval, F. Barrero, O. Lopez, B. Bogado, M. Jones, E. Levi. “Parameter identification of multiphase induction machines with distributed windings - part 1: Sinusoidal excitation methods”. Energy Conversion, Transactions on. Vol. 27. 2012. pp. 1056-1066.
A. Riveros, A. Yepes, F. Barrero, J. Doval, B. Bogado, O. Lopez, M. Jones, E. Levi. “Parameter identification of multiphase induction machines with distributed windings - part 2: Time-domain techniques”. Energy Conversion, IEEE Transactions on. Vol. 27. 2012. pp. 1067-1077.
J. Pedra. “On the determination of induction motor parameters from manufacturer data for electromagnetic transient programs”. Power Systems, Transactions on. Vol. 23. 2008. pp. 1709-1718.
E. Laroche, M. Boutayeb. “Identification of induction motor in sinusoidal mode”. Energy Conversion, IEEE Transactions on. Vol. 25. 2010. pp. 11-19.
M. Amrhein, P. Krein. “Induction machine modeling approach based on 3-D magnetic equivalent circuit framework”. Energy Conversion, IEEE Transactions on. Vol. 25. 2010. pp. 339-347.
S. Raptis, A. Kladas, J. Tegopoulos. “Accurate induction motor estimator based on magnetic field analysis”. Magnetics, IEEE Transactions on. Vol. 44. 2008. pp. 1574-1577.
G. Kenné, R. Simo, F. Lamnabhi, A. Arzandé, J. Vannier. “An online simplified rotor resistance estimator for induction motors”. Control System Technology, IEEE Transactions on. Vol. 18. 2010. pp. 1188-1194.
C. Kral, T. Habetler, R. Harley, F. Pirker, G. Pascoli, H. Oberguggenberger, C. Fenz. “Rotor temperature estimation of squirrel cage induction motors by means of a combined scheme of parameter estimation and a thermal equivalent model”. Industry Applications, IEEE Transactions on. Vol. 40. 2004. pp. 1049-1057.
A. Proca, A. Keyhani. “Sliding-mode flux observer with online rotor parameter estimation for induction motors”. Industrial Electronics, IEEE Transactions on. Vol. 54. 2007. pp. 716-723.
S. Rao, M. Buss, V. Utkin. “Simultaneous state and parameter estimation in induction motors using first- and second-order sliding modes”. Industrial Electronics, IEEE Transactions on. Vol. 56. 2009. pp. 3369-3376.
L. Peretti, M. Zigliotto. “Automatic procedure for induction motor parameter estimation at standstill”. IET Electric Power Applications. Vol. 6. 2012. pp. 214-224.
K. Huang, Q. Wu, D. Turner. “Effective identification of induction motor parameters based on fewer measurements”. Energy Conversion, IEEE Transactions on. Vol. 17. 2002. pp. 55-60.
B. Abdelhadi, A. Benoudjit, N. Nait. “Application of generic algorithm with a novel adaptive scheme for the identification of induction machine parameters”. Energy Conversion, IEEE Transactions on. Vol. 20. 2005. pp. 284-291.
H. Khang, A. Arkkio. “Parameter estimation for deepbar induction motor”. IET Electric Power Applications. Vol. 6. 2012. pp. 133-142.
K. Yamazaki, A. Suzuki, M. Ohto, T. Takakura. “Circuit parameters determination involving stray load loss and harmonic torques for high-speed induction motors fed by inverters”. Energy Conversion, IEEE Transactions on. Vol. 28. 2013. pp. 154-163.
J. Aller, J. Restrepo, A. Bueno, M. Gimenez, G. Pesse. Squirrel cage induction machine model for the analysis of sensorless speed measurement methods. Proceedings of the 2nd IEEE International Caracas Conference on Devices, Circuits and Systems. Caracas, Venezuela. 1998. pp. 243-248.
J. Aller, T. Habetler, R. Harley, R. Tallam, S. Lee. “Sensorless speed measurement of AC machines using instantaneous analytic wavelet transforms”. Industry Applications, IEEE Transactions on. Vol. 38. 2002. pp. 1344-1350.
J. Aller, J. Restrepo, A. Bueno, M. Giménez, V. Guzmán. “Induction machine model for sensorless speed measurement systems”. IEEE Power Engineering Review. Vol. 28. 1998. pp. 53-54.
J. Rengifo, J. Aller, A. Bueno, J. Viola, J. Restrepo. Parameter estimation method for induction machines using the instantaneous impedance during a dynamic start-up. Proceedings of the VI Andean Region International Conference (ANDESCON). Cuenca, Ecuador. 2012. pp. 11-14.
J. Cameron, W. Thomson, A. Dow. “Vibration and current monitoring for detecting airgap eccentricity in large induction motors”. IEE Proceedings B Electric Power Applications. Vol. 133. 1986. pp. 155-163.
J. Restrepo, P. Bowler. Analysis of induction machine slot harmonics in the TF domain. Proceedings of the 1st IEEE International Caracas Conference on Devices, Circuits and Systems. Caracas, Venezuela. 1995. pp. 127-130.
S. Mallat. A wavelet tour of signal processing. 3rd ed. Ed. Academic Press. Boston, USA. 1999. pp. 820.
A. Trzynadlowski, The field orientation principle in control of induction motors. 1st ed. Ed. Kluwer Academic Pub. New York, USA. 1994. pp. 255.
J. Aller, A. Bueno, T. Pagá. “Power system analysis using space vector transformation”. Power System, IEEE Transactions on. Vol. 17. 2002. pp. 957-965.
L. Rabiner, B. Gold. Theory and application of digital signal processing. 1st ed. Ed. Prentice-Hall, Inc. New Jersey, USA. 1975. pp. 777.
R. Byrd, M. Hribar, J. Nocedal. “An interior point algorithm for large-scale nonlinear programming”. SIAM Journal on Optimization. Vol. 9. 1999. pp. 877- 900.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
