Reducing the hardware requirements in FPGAbased controllers: a photovoltaic application

Authors

DOI:

https://doi.org/10.17533/udea.redin.17162

Keywords:

photovoltaic, grid connection, FPGA implementation, resources requirement

Abstract

Single-phase grid connected photovoltaic systems suffer from voltage oscillations due to the difference between the average power produced by the source and the pulsating instantaneous power injected into the grid. Suchvoltage variations have a detrimental effect on the power production. This paper proposes a solution for mitigating the oscillations at the source terminals minimizing the hardware resources required to implement the technique in a FPGA device, allowing its coexistence with additional control algorithms in a single device. The effectiveness of the approach was experimentally validated, and its FPGA resources requirement was contrasted with commercial IP cores based solutions.

|Abstract
= 141 veces | PDF (ESPAÑOL (ESPAÑA))
= 66 veces|

Downloads

Download data is not yet available.

References

J. Lai. “Power conditioning circuit topologies.” IEEE ind. electron. Mag. Vol. 3. 2009. pp. 24-34. DOI: https://doi.org/10.1109/MIE.2009.932580

S. Kjaer, J. Pedersen, F. Blaabjerg. “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules.” IEEE trans. on ind. appl. Vol. 41 .2005. pp. 1292-1306. DOI: https://doi.org/10.1109/TIA.2005.853371

G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, M. Vitelli. “Reliability Issues in Photovoltaic Power Processing Systems.” IEEE trans. on ind. electron. Vol. 55. 2008. pp. 2569-2580. DOI: https://doi.org/10.1109/TIE.2008.924016

R. Gemmen. “Analysis for the Effect of Inverter Ripple Current on Fuel Cell Operating Condition”. J. of fluids eng. Vol. 125. 2003. pp. 576-585. DOI: https://doi.org/10.1115/1.1567307

W. Choi, P. Enjeti, J. Howze, G. Young. “An experimental evaluation of the effects of ripple current generated by the power conditioning stage on a proton exchange membrane fuel cell stack.” J. of mater. eng. and perform. Vol. 13. 2004. pp. 257-264. DOI: https://doi.org/10.1361/10599490419144

G. Spagnuolo, G. Petrone, S. Araujo, C. Cecati, E. Friis, E. Gubia, D. Hissel, M. Jasinski, W. Knapp, M. Liserre, P. Rodriguez, R. Teodorescu, P. Zacharias. “Renewable Energy Operation and Conversion Schemes: A Summary of Discussions During the Seminar on Renewable Energy Systems.” IEEE ind. electron. mag. Vol. 4. 2010. pp. 38-51. DOI: https://doi.org/10.1109/MIE.2010.935863

R. Wai, C. Lin. “Active Low-Frequency Ripple Control for Clean-Energy Power Conditioning Mechanism.” IEEE trans. on ind. electron. Vol. 57. 2010. pp. 3780- 3792. DOI: https://doi.org/10.1109/TIE.2010.2040569

M. Mohr, W. Franke, B. Wittig, F. Fuchs. “Converter Systems for Fuel Cells in the Medium Power Range: a Comparative Study.” IEEE trans. on ind. electron. Vol. 57. 2010. pp. 2024-2032. DOI: https://doi.org/10.1109/TIE.2010.2044730

N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli. “A Technique for Improving P&O MPPT performances of Double Stage Grid-Connected Photovoltaic Systems.” IEEE trans. on ind. Electron. Vol. 56. 2009. pp. 4473- 4482. DOI: https://doi.org/10.1109/TIE.2009.2029589

G. Tsengenes, G. Adamidis. “Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power.” Electr. power syst. res. Vol. 81. 2011. pp. 177-184. DOI: https://doi.org/10.1016/j.epsr.2010.08.008

S. Buso, P. Mattavelli. Digital Control in Power Electronics. 1st ed. Ed. Morgan & Claypool. Sacramento, USA. 2006. pp. 109-144. DOI: https://doi.org/10.1007/978-3-031-02495-5_5

J. Kwon, B. Kwon, K. Nam. “Grid-Connected Photovoltaic Multistring PCS With PV Current Variation Reduction Control.” IEEE trans. on ind. electron. Vol. 56. 2009. pp. 4381-4388. DOI: https://doi.org/10.1109/TIE.2008.2010293

F. Ruz, A. Rey, J. Torrelo, A. Nieto, F. Canovas. “Real time test benchmark design for photovoltaic grid-connected control systems.” Electr. power syst. res. Vol. 81. 2011. pp. 907-914. DOI: https://doi.org/10.1016/j.epsr.2010.11.023

E. Monmasson, L. Idkhajine, M. Naouar. “FPGA-based Controllers.” IEEE Ind. Electron. Mag. Vol. 5. 2011. pp. 14-26. DOI: https://doi.org/10.1109/MIE.2011.940250

J. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. Comech, R. Granadino, J. Frau. “Distributed Generation: Toward a New Energy Paradigm.” IEEE ind. electron. mag. Vol. 4. 2010. pp. 52-64. DOI: https://doi.org/10.1109/MIE.2010.935862

C. Ramos, G. Petrone, A. Saavedra. “Compensation of DC-link voltage oscillations in grid connected PV systems.” Rev. Fac. Ing. Univ. Antioquia. No. 63. 2012. pp. 82-92.

U. Farooq, H. Jamal, S. Khan. “Transformation to implement computationally efficient IIR decimation filters.” Digit. signal process. Vol. 19. 2009. pp. 33-44. DOI: https://doi.org/10.1016/j.dsp.2008.01.004

A. Oppenheim, R. Schafer, J. Buck. Discrete-Time Signal Processing. 2nd ed. Ed. Prentice Hall. New York. USA. 1998. pp. 465-478.

K. Rangarao, R. Mallik. Digital Signal Processing a Practitioner’s Approach. 1st ed. Ed. John Wiley & Sons. New York, USA. 2005. pp. 101-119. DOI: https://doi.org/10.1002/0470034009

Opal kelly. XEM3010 User’s Manual. Available on: http://assets00.opalkelly.com/library/XEM3010-UM.pdf. Accessed: December 2011. pp. 5-22.

Xilinx. Spartan-3 Generation FPGA User Guide - Extended Spartan-3A, Spartan-3E, and Spartan-3 FPGA Families. Aviable on: http://www.xilinx.com/support/documentation/user_guides/ug331.pdf. Accessed: December 2011. pp. 203-212.

Published

2013-10-21

How to Cite

Ramos-Paja, C., Mamarelis, E., Petrone, G., Spagnuolo, G., Vitelli, M., & Giral, . R. (2013). Reducing the hardware requirements in FPGAbased controllers: a photovoltaic application. Revista Facultad De Ingeniería Universidad De Antioquia, (68), 75–87. https://doi.org/10.17533/udea.redin.17162