Passive sampling in the study of dynamic and environmental impact of pesticides in water

Authors

  • Jhon F. Narvaez V. University of Antioquia
  • Carlos A. Lopez University of Antioquia
  • Francisco J. Molina P. University of Antioquia

DOI:

https://doi.org/10.17533/udea.redin.17221

Keywords:

xenobiotics, metabolites, passive sampling, SPMD, POCIS and green analytical chemistry, persistence

Abstract

Pesticides are the most applied substances in agricultural activities which can contaminate water bodies by direct or indirect discharge, but large volumes and natural transformation processes can decrease the concentration of these substances and their degradates in watershed. Currently, conventional extraction methods such as: solid phase extraction (SPE) and solid phase micro extraction (SPME) among others do not permit low detection limits. However low levels of pesticides and degradates could produce chronic toxicity in different species. Nowadays, passive sampling is widespread used for monitoring pesticides and for ensuring the water quality and bioaccumulation studies due to this methodology allows the detection of pollutant from parts per quadrillion (ppq). The most popular membranes used in passive sampling are the semipermeable membrane devices (SPMD), which permit the concentration of lipophilic substances and the polar organic chemical integrative sampler (POCIS), which permits concentration of the hydrophilic ones. This review is about the application of passive samplers in pesticides analysis, the importance of these devices in the bioaccumulation studies and the evaluation of the ecotoxicological risks. Finally, passive sampling allows reducing costs, time and the amount of organic solvent used which classifies it within the environmental trends of “green analytical chemistry”.

|Abstract
= 425 veces | PDF (ESPAÑOL (ESPAÑA))
= 89 veces|

Downloads

Download data is not yet available.

Author Biographies

Jhon F. Narvaez V., University of Antioquia

Environmental Management and Modeling Research Group-GAIA. Faculty of Engineering.

Carlos A. Lopez, University of Antioquia

Waste Analysis Laboratory. Institute of Chemistry.

Francisco J. Molina P., University of Antioquia

Environmental Management and Modeling Research Group-GAIA. Faculty of Engineering.

References

I. Cavoski, P. Caboni, G. Sarais, T. Miano. “Degradation and Persistence of Rotenone in Soils and Influence of Temperature Variations”. Journal of agricultural and food chemistry. Vol. 56. 2008. pp. 8066-8073. DOI: https://doi.org/10.1021/jf801461h

A. Belfroid, M. Van Drunen, M. Beek, S. Schrap, C. Van Gestel, B. Van Hattum. “Relative risks of transformation products of pesticides for aquatic ecosystems”. The Science of the total environment.Vol. 222. 1998. pp.167-183. DOI: https://doi.org/10.1016/S0048-9697(98)00298-8

C. Colosio, S. Fustinoni, S. Birindelli, I. Bonomi, G. De Paschale, T. Mammone, et al. “Ethylenethiourea in urine as an indicator of exposure to mancozeb in vineyard workers”. Toxicology letters. Vol. 134. 2002. pp. 133-140. DOI: https://doi.org/10.1016/S0378-4274(02)00182-0

G. Darko, O. Akoto, C. Oppong. “Persistent organochlorine pesticide residues in fish, sediments and water from Lake Bosomtwi, Ghana”. Chemosphere.Vol. 72. 2008. pp. 21-24. DOI: https://doi.org/10.1016/j.chemosphere.2008.02.052

Y. Chen, Z. Guo, X. Wang, C. Qiu. “Sample preparation”. Journal of Chromatography A. Vol. 1184. 2008. pp. 191-219. DOI: https://doi.org/10.1016/j.chroma.2007.10.026

Nollet L. “Handbook of Water Analysis”. Tribaldo EB. Analysis of Pesticides in Water. 2nd ed. Ed. CRC Press Taylor and Francis Group. Boca Raton, FL, USA. 2007. pp. 449-481.

B. Vrana, I. Allan, R. Greenwood, G. Mills, E. Dominiak, K. Svensson, et al. Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry. Vol. 24. 2005. pp. 845-868. DOI: https://doi.org/10.1016/j.trac.2005.06.006

C. Harman, O. Bøyum, K. Tollefsen, K. Thomas, M. Grung. “Uptake of some selected aquatic pollutants in semipermeable membrane devices (SPMDs) and the polar organic chemical integrative sampler (POCIS)”. J. Environ. Monit. Vol. 10. 2008. pp. 239-247. DOI: https://doi.org/10.1039/B714725B

C. Harman, K. Tollefsen, O. Bøyum, K. Thomas, M. Grung. “Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)”. Chemosphere. Vol. 72. 2008. pp. 1510-1516. DOI: https://doi.org/10.1016/j.chemosphere.2008.04.091

Van der Werf HMG. “Assessing the impact of pesticides on the environment”. Agriculture, Ecosystems & Environment. Vol. 60. 1996. pp. 81-96. DOI: https://doi.org/10.1016/S0167-8809(96)01096-1

F. Stuer. “Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment”. Environmental Pollution. Vol.136. 2005. pp. 503-524. DOI: https://doi.org/10.1016/j.envpol.2004.12.004

T. Gorecki, J. Namiesnik. “Passive sampling”. TrAC Trends in Analytical Chemistry. Vol. 21. 2002. pp. 276-291. DOI: https://doi.org/10.1016/S0165-9936(02)00407-7

R. Greenwood, G. Mills, B. Vrana. “Potential applications of passive sampling for monitoring non-polar industrial pollutants in the aqueous environment in support of REACH”. Journal of Chromatography A.Vol. 1216. 2009. pp. 631-639. DOI: https://doi.org/10.1016/j.chroma.2008.09.091

B. Vrana, G. Mills, E. Dominiak, R. Greenwood. “Calibration of the Chemcatcher passive sampler for the monitoring of priority organic pollutants in water”. Environmental Pollution. Vol. 142. 2006. pp. 333-343. DOI: https://doi.org/10.1016/j.envpol.2005.10.033

G. Ouyang, J. Pawliszyn. “Configurations and calibration methods for passive sampling techniques”. Journal of Chromatography A. Vol. 1168. 2007. pp. 226-235. DOI: https://doi.org/10.1016/j.chroma.2007.01.133

S. MacLeod, E. McClure, C. Wong. “Laboratory calibration and field deployment of the polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water”. Environmental Toxicology and Chemistry. Vol. 26. 2007. pp. 2517-2529. DOI: https://doi.org/10.1897/07-238.1

S. Seethapathy, T. Górecki, X. Li. “Passive sampling in environmental analysis”. Journal of Chromatography A. Vol. 1184. 2008. pp. 234-253. DOI: https://doi.org/10.1016/j.chroma.2007.07.070

D. Alvarez. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. US Geological Survey, Techniques and Methods. 2010:1-D4. Available on: http://pubs.usgs.gov/tm/tm1d4/pdf/tm1d4.pdf. Accessed: April 2012

U.S. Geological Survey. Columbia Environmental Research Center. Available on: http://www.cerc.usgs.gov/Branches.aspx?BranchId=8. Accessed: April 2012

F. Esteve, V. Yusà, A. Pastor, M. De La Guardia. “New perspectives in the use of semipermeable membrane devices as passive samplers”. Talanta. Vol. 74. 2008. pp. 443-457. DOI: https://doi.org/10.1016/j.talanta.2007.06.019

R. Hyne, M. Aistrope. Continuous sampling of pesticides in waterways. Centre for Ecotoxicology, Department of Environment & Conservation, NSW. Available on: http://www.irec.org.au/farmer_f/pdf_171/Continuous%20sampling%20of%20pesticides%20in%20waterways.pdf. Accessed: April 2012.

R. Aguilar, M. Gómez, R, Greenwood, G. Mills, B. Vrana, M. Palacios. “Application of Chemcatcher passive sampler for monitoring levels of mercury in contaminated river water”. Talanta. Vol 77. 2009. pp. 1483-1489. DOI: https://doi.org/10.1016/j.talanta.2008.09.037

R. Aguilar, R. Greenwood, G. Mills, B. Vrana, M. Palacios, M. Gómez. “Assessment of Chemcatcher passive sampler for the monitoring of inorganic mercury and organotin compounds in water”. International Journal of Environmental and Analytical Chemistry. Vol. 88. 2008. pp. 75-90. DOI: https://doi.org/10.1080/03067310701461870

R. Schäfer, A. Paschke, B. Vrana, R. Mueller, M. Liess. ”Performance of the Chemcatcher passive sampler when used to monitor 10 polar and semi-polar pesticides in 16 Central European streams, and comparison with two other sampling methods”. Water research. Vol. 42. 2008. pp. 2707-2717. DOI: https://doi.org/10.1016/j.watres.2008.01.023

E. Bailly, Y. Levi, S. Karolak. “Calibration and field evaluation of polar organic chemical integrative sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater”. Environmental Pollution. Vol. 174. 2013. pp. 100-105. DOI: https://doi.org/10.1016/j.envpol.2012.10.025

A. Arditsoglou, D. Voutsa. “Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers”. Environmental Pollution. Vol 156. 2008. pp. 316-324. DOI: https://doi.org/10.1016/j.envpol.2008.02.007

F. Esteve, A. Pastor, V. Yusà, M. De La Guardia. “Using semi-permeable membrane devices as passive samplers”. TrAC Trends in Analytical Chemistry. Vol. 26. 2008. pp. 703-712. DOI: https://doi.org/10.1016/j.trac.2007.05.006

Y. Wang, Z. Wang, J. Liu, M. Ma, N. Belzile.“Monitoring priority pollutants in the Yanghe River by dichloromethane extraction and semipermeable membrane device (SPMD)”. Chemosphere. Vol. 39. 1999. pp. 113-131. DOI: https://doi.org/10.1016/S0045-6535(98)00571-2

M. Shaw, M. Furnas, K. Fabricius, D. Haynes, S. Carter, G. Eaglesham, et al. “Monitoring pesticides in the Great Barrier Reef”. Marine Pollution Bulletin. Vol. 60. 2010. pp. 113-122. DOI: https://doi.org/10.1016/j.marpolbul.2009.08.026

J. Namieśnik, B. Zabiegała, A. Kot, M. Partyka, A. Wasik. “Passive sampling and/or extraction techniques in environmental analysis: a review”. Analytical and bioanalytical chemistry. Vol. 381. 2005. pp. 279-301. DOI: https://doi.org/10.1007/s00216-004-2830-8

J. Huckins, D. Alvarez. Semipermeable membrane devices (SPMD). Columbia Environmental Research Center. Available on: http://www.cerc.usgs.gov/pubs/center/pdfDocs/SPMD.pdf. Accessed: April 2012.

J. Huckins, D. Alvarez. Polar Organic Chemical Integrative Sampler. Columbia Environmental Research Center. Available on: http://www.cerc.usgs.gov/Content/UploadedFiles/ExternalDocs/POCIS.pdf. Accessed: April 2012.

T. Reemtsma, M. Jekel. Organic Pollutants in the Water Cycle: Properties, Occurrence, Analysis & Environmental Relevance of Polar Compounds.Ed. Thorsten Reemtsma and Martin Jekel. Berlin, Germany. 2006. pp. 2-59. DOI: https://doi.org/10.1002/352760877X

C. Harman, S. Brooks, R. Sundt, S. Meier, M. Grung. “Field comparison of passive sampling and biological approaches for measuring exposure to PAH and alkylphenols from offshore produced water discharges”. Marine Pollution Bulletin. Vol. 63. 2011. pp. 141-148. DOI: https://doi.org/10.1016/j.marpolbul.2010.12.023

IUPAC. Global availability of information on agrochemicals. Available on: http://sitem.herts.ac.uk/aeru/iupac/154.htm. Accessed: April 2012.

N. Fork. Investigation of Organic Chemicals Potentially Responsible for Mortality and Intersex in Fish of the North Fork of the Shenandoah River, Virginia, during Spring of 2007. Available on: http://pubs.usgs.gov/of/2008/1093/pdf/OFR2008-1093.pdf. Accessed: April 2012.

G. Liu, G. Zhang, J. Li, X. Li, X. Peng, S. Qi. ”Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China”. Atmospheric Environment. Vol. 40. pp. 3134-3143. DOI: https://doi.org/10.1016/j.atmosenv.2006.01.027

N. Følsvik, E. Brevik, J. Berge. “Monitoring of organotin compounds in seawaterusing semipermeable membrane devices (SPMDs)—tentative results”. J Environ Monit. Vol. 2. 2000. pp. 281-284. DOI: https://doi.org/10.1039/b002768p

S. Goodbred, W. Bryant, M. Rosen, D. Alvarez, T. Spencer. “How useful are the “other” semipermeable membrane devices (SPMDs); the mini-unit (15.2cm long)?”. Science of the Total Environment. Vol. 407. 2009. pp. 4149-4156. DOI: https://doi.org/10.1016/j.scitotenv.2009.02.037

L. Šetková, J. Hajšlová, P. Bergqvist, V. Kocourek, R. Kazda, P. Suchan. “Fast isolation of hydrophobic organic environmental contaminants from exposed semipermeable membrane devices (SPMDs) prior to GC analysis”. Journal of Chromatography A. Vol. 1092. 2005. pp. 170-181. DOI: https://doi.org/10.1016/j.chroma.2005.07.059

D. Sabaliunas, J. Ellington, I. Sabaliuniene. “Screening bioavailable hydrophobic toxicants in surface waters with semipermeable membrane devices: role of inherent oleic acid in toxicity evaluations”. Ecotoxicology and Environmental Safety. Vol. 44. 1999. pp. 160-167. DOI: https://doi.org/10.1006/eesa.1999.1802

F. Cid, R. Antón, E. Caviedes. “Organochlorine pesticide contamination in three bird species of the Embalse La Florida water reservoir in the

L. Kalyoncu, I. Agca, A. Aktumsek. “Some organochlorine pesticide residues in fish species in Konya, Turkey”. Chemosphere. Vol. 74. 2009. pp. 885-889. DOI: https://doi.org/10.1016/j.chemosphere.2008.11.020

V. Yusà, A. Pastor, M. Guardia. “Microwave-assisted extraction of OCPs, PCBs and PAHs concentrated by semi-permeable membrane devices (SPMDs)”. Analytica chimica acta. Vol. 540. 2005. pp. 355-366. DOI: https://doi.org/10.1016/j.aca.2005.03.010

D. Alvarez, P. Stackelberg, J. Petty, J. Huckins, E. Furlong, S. Zaugg, et al. “Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream”. Chemosphere.Vol. 61. 2005. pp. 610-622. DOI: https://doi.org/10.1016/j.chemosphere.2005.03.023

M. Isidori, M. Ferrara, M. Lavorgna, A. Nardelli, A. Parrella. “In situ monitoring of urban air in Southern Italy with the Tradescantia micronucleus bioassay and semipermeable membrane devices (SPMDs)”. Chemosphere. Vol. 52. 2003. pp. 121-126. DOI: https://doi.org/10.1016/S0045-6535(03)00183-8

D. Sabaliunas, A. Södergren. “Use of semi-permeable membrane devices to monitor pollutants in water and assess their effects: A laboratory test and field verification”. Environmental Pollution. Vol. 96. 1997. pp. 195-205. DOI: https://doi.org/10.1016/S0269-7491(97)00021-3

C. Gourlay, C. Miège, A. Noir, C. Ravelet, J. Garric, J. Mouchel. “How accurately do semi-permeable membrane devices measure the bioavailability of polycyclic aromatic hydrocarbons to Daphnia magna?”. Chemosphere. Vol. 61. 2005. pp. 1734-1739. DOI: https://doi.org/10.1016/j.chemosphere.2005.04.039

B. Tan, D Hawker, J. Müller, F. Leusch, L. Tremblay, H. Chapman. “Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia”. Environment international. Vol. 33. 2007. pp. 654-669. DOI: https://doi.org/10.1016/j.envint.2007.01.008

C. Wang, Y. Wang, F. Kiefer, A. Yediler, Z. Wang, A. Kettrup. “Ecotoxicological and chemical characterization of selected treatment process effluents of municipal sewage treatment plant”. Ecotoxicology and Environmental Safety. Vol. 56. 2003. pp. 211-217. DOI: https://doi.org/10.1016/S0147-6513(02)00121-5

D. Sabaliunas, J. Lazutka, I. Sabaliuniene. “Acute toxicity and genotoxicity of aquatic hydrophobic pollutants sampled with semipermeable membrane devices”. Environmental Pollution. Vol. 109. 2000. pp. 251-265. DOI: https://doi.org/10.1016/S0269-7491(99)00259-6

R. Muller, J. Tang, R. Thier, J. Mueller. ”Combining passive sampling and toxicity testing for evaluation of mixtures of polar organic chemicals in sewage treatment plant effluent”. J Environ Monit. Vol. 9. 2007. pp. 105-110. DOI: https://doi.org/10.1039/B612430E

S. Bonetta, E. Carraro, C. Pignata, I. Pavan, C. Romano, G. Gilli. “Application of semipermeable membrane device (SPMD) to assess air genotoxicity in an occupational environment”. Chemosphere. Vol. 75. 2009. pp. 1446-1452. DOI: https://doi.org/10.1016/j.chemosphere.2009.02.039

E. Vermeirssen, N. Bramaz, J. Hollender, H. Singer, B. Escher. “Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides-evaluation of three Chemcatcher (TM) configurations”. Water research.Vol. 43. 2009. pp. 903-914. DOI: https://doi.org/10.1016/j.watres.2008.11.026

Published

2013-10-24

How to Cite

Narvaez V., J. F., Lopez, C. A., & Molina P., F. J. (2013). Passive sampling in the study of dynamic and environmental impact of pesticides in water. Revista Facultad De Ingeniería Universidad De Antioquia, (68), 147–159. https://doi.org/10.17533/udea.redin.17221