Genetic algorithm for estimating in-situ rock elastic constants by acoustic reflection records

Authors

  • Luis Montes National University of Colombia
  • Ovidio Almanza National University of Colombia
  • Alfredo Ghisays Atlantic University

DOI:

https://doi.org/10.17533/udea.redin.17223

Keywords:

in situ, genetic algorithm, inversion, elastic constants

Abstract

The elastic properties of rocks can be estimated from the density (ρ), acoustic (Vp), and shear (Vs) wave velocities, whose values establish the reflected wave amplitudes. This paper presents an indirect method to estimate rocks` elastic properties, that uses Vp, Vs, and ρ values supplied by the inversion of acoustic reflection records. Because of the non-uniqueness and non-linear nature of the inversion, the solution must be sought in a search space by minimizing a cost function that measures the error between the observed datum and the inferred one. The search may converge to a local minimum, and then the true global minima may not be reached. Genetic algorithms have proven to be more efficient in finding the optimal solution for this type of search space.

A genetic algorithm coded in Matlab estimates ρ, Vp, and Vs through the inversion of the equation that relates them to the amplitudes and angles of incidence of the acoustic waves. Lamé elastic constant (λ), Poisson›s ratio (ν), and modulus of elasticity (E), compressibility (K) and rigidity (G) can bedeemed from ρ, Vp and Vs.

The algorithm was tested in synthetic data to verify its robustness and stability, and then applied to seismic records showing a good perform in both cases. The presented method has a deeper scope than the refractionmethod, and is applicable to different engineering fields. 

|Abstract
= 118 veces | PDF (ESPAÑOL (ESPAÑA))
= 65 veces|

Downloads

Author Biographies

Luis Montes, National University of Colombia

Department of Geosciences.

Ovidio Almanza, National University of Colombia

Physics department.

Alfredo Ghisays, Atlantic University

Faculty of Basic Sciences.

References

E. Hoek, M. Diederichs. “Empirical estimation of rock mass modulus”. International Journal of Rock Mechanics & Mining Sciences. Vol. 43. 2006. pp. 203-215 DOI: https://doi.org/10.1016/j.ijrmms.2005.06.005

P. Palmström, S. Rajbal. “The Deformation Modulus of Rock Masses, - Comparisons between in situ tests and indirect estimates”. Tunnelling and Underground Space Technology. Vol. 16. 2001. pp. 115-131. DOI: https://doi.org/10.1016/S0886-7798(01)00038-4

P. Santi, J. Holschen, R. Stephenson. “Improving Elastic Modulus measurements for based on Geology”. Enviromental & Engineering Geosciences. Vol. VI. 2000. pp. 333-346. DOI: https://doi.org/10.2113/gseegeosci.6.4.333

I. Ocak. Empirical estimation of intact rock elastic modulus. 21th international mining congress of Turkey. Antalya, Turkey. 2009. pp. 165-172.

I. Ocak, S. Seker. “Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network”. Rock Mech. Rock Eng. Vol. 45. 2012. pp. 1047-1054. DOI: https://doi.org/10.1007/s00603-012-0236-z

L. Briceño, R. Díaz. “Medida de propiedades dinámicas de rocas “in situ” y cómputo de parámetros elastomecánicos”. Geofísica Colombiana. Vol. 3. 1995. pp. 73-79.

T. Odumosu, C. Torres, M. Salazar, J. Ma, B. Voss, G. Wang. Estimation of Dry-Rock Elastic Moduli Based on the Simulation of Mud-Filtrate Invasion Effects on Borehole Acoustic Logs. 2007 SPE Annual Technical Conference and Exhibition. Anaheim, Ca, USA. 2007. pp. 1-16. DOI: https://doi.org/10.2118/109879-MS

A. Manilla, P. Garnica, A. Pérez. “Evaluación indirecta de los módulos elásticos de rigidez in situ y la relación entre Vp/Vs y el ángulo de fricción interna”. Publicación Técnica. Nº 225. 2003. pp. 5-25.

K. Aki, P. Richards. Quantitative seismology. 2nd ed. Ed. University Science Books. Sausalito, Ca, USA. 2002. pp. 119-183.

J. Fatti, G. Smith, P. Vail, P. Strauss, P. Levitt. “Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using Geostack technique”. Geophysics. Vol. 59. 1994. pp. 1362-1376. DOI: https://doi.org/10.1190/1.1443695

M. Sen. Seismic Inversion. 1st ed. Edited by the Society of Petroleum Engineers. Richardson, Tx, USA. 2006. pp. 61-67. DOI: https://doi.org/10.2118/9781555631109

K. Castaño, G. Ojeda, L. Montes. “Thin-layer detection using spectral inversion and a genetic algorithm”. Earth Sci. Res. J. Vol. 15. 2011. pp. 121-128.

Ö. Yilmaz. Seismic Data Analysis: processing, inversion and Interpretation of Seismic Data. 2nd ed. Published by the Society of Exploration Geophysicists. Tulsa, Ok, USA. 2001. pp. 25-124. DOI: https://doi.org/10.1190/1.9781560801580

G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. 1st ed. Ed. Cambridge University Press. Cambridge, UK. 2009. pp. 21-76. DOI: https://doi.org/10.1017/CBO9780511626753

D. Cacuci. Sensitivity and uncertainty analysis: Theory. Vol. 1. Ed. Chapman & Hall/CRC. Boca Raton, USA. 2003. pp 132-141.

A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. Sensitivity analysis in practice: a guide to assessing scientific models. 1st ed. Ed. John Wiley & Sons. Chichester, England. 2004. pp. 109-148.

M. Mitchell. An Introduction to Genetic Algorithms. 1st ed. Ed. MIT Press. Boston, Mass., USA. 1998. pp. 35-81. DOI: https://doi.org/10.7551/mitpress/3927.001.0001

I. Farmer. Engineering Property of Rocks. 1st ed. Ed. E & F. N. Spon Ltd. London, England. 1968. pp. 59-85.

Published

2013-10-24

How to Cite

Montes, L., Almanza, O., & Ghisays, A. (2013). Genetic algorithm for estimating in-situ rock elastic constants by acoustic reflection records. Revista Facultad De Ingeniería Universidad De Antioquia, (68), 176–186. https://doi.org/10.17533/udea.redin.17223