Single-pixel optical sensing architecture for compressive hyperspectral imaging

Authors

  • Hoover Fabián Rueda-Chacón University of Delaware
  • Cesar Augusto Vargas-García University of Delaware https://orcid.org/0000-0002-4286-8882
  • Henry Arguello-Fuentes Industrial University of Santander

DOI:

https://doi.org/10.17533/udea.redin.17312

Keywords:

hyperspectral imaging, compressive sensing, optical imaging, coded aperture-based systems, single-pixel detector

Abstract

Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels.

|Abstract
= 162 veces | PDF
= 66 veces|

Downloads

Download data is not yet available.

Author Biographies

Hoover Fabián Rueda-Chacón, University of Delaware

Department of Electrical and Computer Engineering.

Cesar Augusto Vargas-García, University of Delaware

Department of Electrical and Computer Engineering, associate professor.

Henry Arguello-Fuentes, Industrial University of Santander

Associate Professor, School of Systems Engineering and Informatics.

References

W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, D. Mittleman. “A single-pixel terahertz imaging system based on compressed sensing”. Applied Physics Letters. Vol. 93. 2008. pp. 121105-121105-3. DOI: https://doi.org/10.1063/1.2989126

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk. “Single-Pixel Imaging via Compressive Sampling”. IEEE Signal Processing Magazine. Vol. 25. 2008. pp. 83-91. DOI: https://doi.org/10.1109/MSP.2007.914730

D. Hays, A. Zribi, S. Chandrasekaran, S. Goravar, S. Maity, L. Douglas, K. Hsu, A. Banerjee. “A hybrid mems–fiber optic tunable fabry–perot filter”. IEEE Journal of Microelectromechanical Systems. Vol. 19. 2010. pp. 419 - 429. DOI: https://doi.org/10.1109/JMEMS.2009.2038351

J. Brauers, T. Aach. A color filter array based multispectral camera. Proceedings of the 12 Workshop Farbbildverarbeitung, October 5-6. Ilmenau, Germany. 2006.

C. Vanderriest. “Integral field spectroscopy with optical fibers”. 3D Optical Spectroscopic Methods in Astronomy, G. Comte and M. Marcelin, eds Astron. Soc. Pac. Vol. 71. 1995. pp. 209-218. DOI: https://doi.org/10.1017/S0252921100022983

R. Green, M. Eastwood, C. Sarture, T. Chrien, M. Aronsson, B. Chippendale, et al. “Imaging spectroscopy and the airborne visible/ infrared imaging spectrometer (AVIRIS)”. Rem. Sens. Environ. Vol. 65. 1998. pp. 227-248. DOI: https://doi.org/10.1016/S0034-4257(98)00064-9

R. Willett, R. Marcia, J. Nichols. “Compressed sensing for practical optical systems: a tutorial”. Optical Engineering. Vol. 50. 2011. pp. 072601 1-13. DOI: https://doi.org/10.1117/1.3596602

H. Nyquist. “Certain topics in telegraph transmission theory”. IEEE Trans. Vol. 47. 1928. pp. 617-644. DOI: https://doi.org/10.1109/T-AIEE.1928.5055024

E. Candès, J. Romberg, T. Tao. “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information”. IEEE Transactions on Information Theory. Vol. 52. 2006. pp. 489-509. DOI: https://doi.org/10.1109/TIT.2005.862083

D. Donoho. “Compressed sensing”. IEEE Transactions on Information Theory. Vol. 52. 2006. pp. 1289–1306. DOI: https://doi.org/10.1109/TIT.2006.871582

V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, J. Lancis. “Single-pixel polarimetric imaging”. Optics Letters. Vol. 37. 2012. pp. 824–826. DOI: https://doi.org/10.1364/OL.37.000824

F. Magalhães, M. Abolbashari, F. Raújo, M. Correia, F. Farahi. “High-resolution hyperspectral singlepixel imaging system based on compressive sensing”. Optical Engineering. Vol. 51. 2012. pp. 1-6. DOI: https://doi.org/10.1117/1.OE.51.7.071406

Y. August, C. Vachman, Y. Rivenson, A. Stern. “Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains”. Applied Optics. Vol. 52. 2013. pp. D46-D54. DOI: https://doi.org/10.1364/AO.52.000D46

H. Rueda, H. Arguello. “Spatial super-resolution in coded aperture-based optical compressive hyperspectral imaging systems”. Revista Facultad de Ingeniería Universidad de Antioquia. Vol. 67. 2013. pp. 7-18. DOI: https://doi.org/10.17533/udea.redin.16306

A. Wagadarikar, R. John, R. Willett, D. Brady. “Single disperser design for coded aperture snapshot spectral imager”. Applied Optics. Vol. 47. 2008. pp. B44-B51. DOI: https://doi.org/10.1364/AO.47.000B44

H. Arguello, G. Arce. “Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging”. IEEE Transactions on Image Processing. Vol. 22. 2013. pp. 941-954. DOI: https://doi.org/10.1109/TIP.2012.2222899

H. Arguello, H. Rueda, Y. Wu, D. Prather, G. Arce. “Higher-order computational model for coded aperture spectral imaging”. Applied Optics. Vol. 52. 2013. pp. D12-D21. DOI: https://doi.org/10.1364/AO.52.000D12

H. Arguello, C. Correa, G. Arce. “Fast lapped block reconstructions in compressive spectral imaging”. Applied Optics. Vol. 52. 2013. pp. D32-D45. DOI: https://doi.org/10.1364/AO.52.000D32

H. Arguello, G. Arce. “Code aperture optimization for spectrally agile compressive imaging”. J. Opt. Soc. Am. A. Vol. 28. 2011. pp. 2400-2413. DOI: https://doi.org/10.1364/JOSAA.28.002400

Y. Wu, I. Mirza, P. Ye, G. Arce, D. Prather. Development of a DMD-based compressive sampling hyperspectral imaging (CS-HSI) system. Proceedings of the SPIE 7932, Emerging Digital Micro-mirror Device Based Systems and Applications III, 79320I. San Francisco, USA. 2011. DOI: https://doi.org/10.1117/12.874069

M. Figueiredo, R. Nowak, S. Wright. “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems”. IEEE Journal of Selected Topics in Signal Processing. Vol. 1. 2007. pp. 586–597. DOI: https://doi.org/10.1109/JSTSP.2007.910281

Downloads

Published

2014-11-13

How to Cite

Rueda-Chacón, H. F., Vargas-García, C. A., & Arguello-Fuentes, H. (2014). Single-pixel optical sensing architecture for compressive hyperspectral imaging. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 134–143. https://doi.org/10.17533/udea.redin.17312