Methodology for the identification of transient and permanent faults in overhead transmission lines, using wavelet transforms

Authors

  • Miguel Martínez Universidad Simón Bolívar

DOI:

https://doi.org/10.17533/udea.redin.17763

Keywords:

Permanent and transitory faults, monopolar reclosing, ATP/EMTP, Wavelet Transform

Abstract

In this document an algorithm to detect and distinguish the transient and permanent faults, is developed. Also, the algorithm takes into account the determination of the secondary arc extinction time, to avoid effectively the monopolar reclosing onto faulty phase. The identification method is based on the frequency spectrum characteristics of the voltage waveform of the faulty phase before the operation of the breaker and the current waveform of a healthy phase. Both spectrums are correlated independently using a cross correlation ship. For the signal analysis the wavelet transform are used. The proposed methodology was tested in a electrical system with a nominal voltage of 380 kV, working right in all scenarios studied, reaching the right identification of the permanent or transient fault within the 25 ms after faults occurs.

|Abstract
= 821 veces | PDF (ESPAÑOL (ESPAÑA))
= 95 veces|

Downloads

Download data is not yet available.

Author Biography

Miguel Martínez, Universidad Simón Bolívar

Departamento de Conversión y Transporte de Energía

References

Y. Ge, F. Sui, Y. Xiao. “Prediction methods for preventing single-phase reclosing on permanent faults”. IEEE Trans on Power Delivery. Vol 4. 1989. pp. 114-121. DOI: https://doi.org/10.1109/61.19197

R. Aggarwal, A. T. Johns, Y. Song. R. Dunn, D. Fitton. “Neural network based adaptive single pole autoreclosure technique for EHV transmission systems”. IEE Proc. G. T & D. Vol 141. 1994. pp. 155-160. DOI: https://doi.org/10.1049/ip-gtd:19949864

Z. Radojevic, V. Terzija, M. Duric. “Spectral domain arcing faults recognition and fault distance calculation on transmission lines”. Electric Power System Research. Vol 37. 1996. pp. 106-113. DOI: https://doi.org/10.1016/0378-7796(96)01044-9

Z. Radojevic, M. Duric. “Arcing faults detection and fault distance calculation on transmission lines using least square technique”. International Journal of Power and Energy Systems. Vol. 18. 1998. pp. 106-113.

Z. Radojevic, J. Shin, K. Park, S. Kang, J. Park. “A novel approach to the distance protection, fault location and arcing faults recognition”. IEEE Power Systems Conference and Exposition. Vol. 2. 2004. pp. 628-634.

F. Jiang, Z. Bo, Q. Yang. “The wavelet transform applied to distinguish between transient and permanent faults”. International Conference on Power System Technology. 1998. Vol 2. 1998. pp. 1116 – 1120.

Z. Bo, R. Aggarwal, A. Johns. “A novel technique to distinguish between transient and permanent faults based on the detection of current transients”. Fourth International Conference on Advances in Power System Control, Operation and Management. Vol. 1. 1997. pp. 216 – 220. DOI: https://doi.org/10.1049/cp:19971833

Z. Chen, B. Zhang, Z. Bo, M. Redfern. “Adaptive optimal reclosure based on analysis of fault current transients”. IEEE Power Engineering Society General Meeting. Vol. 4. 2003. pp. 13-17.

C. Sidney Burrus, R. A. Gonipath, H. Guo. Introduction to Wavelets and Wavelet Transforms. Prentice Hall. New York. 1998. pp. 268.

M. Domínguez Jiménez, G. Sansigre Vidal. La transformada wavelet: una introducción. Apuntes de la Asignatura: Transformada wavelet y aplicaciones en Ingeniería del Doctorado en Matemáticas Aplicadas. Universidad Politécnica de Madrid. Abril 2005.

R. M. de Castro, H. Díaz, J. Martínez, M. Martínez. “Introducción a la Transformada Wavelet para ingenieros: un enfoque didáctico”. 2do Congreso Internacional en Innovación y Desarrollo Tecnológico. México. 2004. pp. 7 -14.

R. de Castro, M. López, J. Martínez, H. Díaz, M. Martínez. “Introducción al análisis wavelet para la protección de redes eléctricas: técnicas y criterios de discriminación”. VII Simposio Iberoamericano sobre Protección de Sistemas Eléctricos de Potencia. México. Noviembre 2004. pp. 1-6.

M. Martínez, J. Martínez. “Clasificación y Localización de Faltas, utilizando Wavelets y Redes Neurales”. Novenas Jornadas Hispano Lusas de Ingeniería Eléctrica, Marbella. 2005.

M. Kizilcay. “Dynamic arc modeling in EMTP”. EMTP Newsletter. Vol 5. 1985. pp.18-25.

W. Rogers. Modeling of free-air arcs. Disponible para usuarios con licencia en el website de EEUG.

M. Kizilcay. A survey on Numerical Modelling of Fault Arcs. Disponible para usuarios con licencia en el website de EEUG.

T. Funabashi, T.Otoguro, L. Dubé, M. Kizilcay, A. Ametani. “A Study on fault arc and its influence on digital fault locutor performance”. Conference of Developments in Power System Protection. IEEE. 2001. pp. 418 – 421. DOI: https://doi.org/10.1049/cp:20010188

M. Kizilcay, T. Pniok. “Digital Simulation of Fault Arcs in Power Systems”. European transactions on Electric Power ETEP. Vol. 1. 1991. pp.113-119. DOI: https://doi.org/10.1002/etep.4450010111

EMTP/ATP Rule Book. Leuven University Press. 1981.

IEEE Working Group 15.08.09. “Modeling and analysis of system transients using digital programs”. Special Publication – Tutorial Course. IEEE Press. 1998.

IEEE Tutorial course No. 97TP120-0. Advancements in Microprocessor based protection and communication. 1997.

A. Chaudhari, K. Tam, A. Phadke. “Protection Systems representation in the electromagnetic transients program”. IEEE Trans. Power Delivery. Vol. 9. 1994. pp. 700-711. DOI: https://doi.org/10.1109/61.296247

M. Martínez Lozano. Modelado de los instrumentos de medida (voltaje y corriente), en estudios de protecciones. Avance parcial trabajo doctoral. Prof. Antonio Pastor G. UPM. 2005.

Published

2013-12-03

How to Cite

Martínez, M. (2013). Methodology for the identification of transient and permanent faults in overhead transmission lines, using wavelet transforms. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 176–186. https://doi.org/10.17533/udea.redin.17763