Electricity price forecasting using artificial neural networks

Authors

  • Fernando Villada Universidad de Antioquia
  • Diego Raúl Cadavid Universidad de Antioquia
  • Juan David Molina Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.18508

Keywords:

Forecasting, electricity price, artificial neural networks, time series models

Abstract

A model for forecasting the electricity price in Colombia using artificial neural networks is proposed in this work. Two neural networks structures including the price series in the first and the price series plus the water reserve levels in the latter are used. The results are compared with a Generalized Autorregresive Conditional Heteroskedastic Model (GARCH) model, which shows better adjustment inside the training period, but the neural networks have better performance forecasting outside the training sample. Historical data was supplied by the Company XM belonging to ISA Group, where 120 days were used as training patterns and the next 31 days were left to test the next month forecast.

|Abstract
= 463 veces | PDF (ESPAÑOL (ESPAÑA))
= 229 veces|

Downloads

Download data is not yet available.

Author Biographies

Fernando Villada, Universidad de Antioquia

Grupo de Manejo Eficiente de la Energía – GIMEL

Diego Raúl Cadavid, Universidad de Antioquia

Grupo de Manejo Eficiente de la Energía – GIMEL

Juan David Molina, Universidad de Antioquia

Grupo de Manejo Eficiente de la Energía – GIMEL

References

F. J. Nogales, J. Contreras, A. Conejo, R. Espínola. “Forecasting next-day electricity prices by time series models”. IEEE Transactions on Power System. Vol. 17. 2002. pp. 342 – 348. DOI: https://doi.org/10.1109/TPWRS.2002.1007902

J. Contreras, R. Espínola, F. J. Nogales, A. Conejo. “ARIMA models to predict next-day electricity prices”. IEEE Transactions on Power Systems. Vol. 18. 2003. pp. 1014 – 1020. DOI: https://doi.org/10.1109/TPWRS.2002.804943

A. Conejo, M. A. Plazas, R. Espínola, A. B. Molina. “Day-ahead electricity price forecasting using the Wavelet transform and ARIMA models”. IEEE Transactions on Power Systems. Vol. 20. 2005. pp. 1035 – 1042. DOI: https://doi.org/10.1109/TPWRS.2005.846054

R. C. García, J. Contreras, M. V. Akkeren, J. B. C. García. “A GARCH forecasting model to predict dayahead electricity prices”. IEEE Transactions on Power Systems. Vol. 20. 2005.pp. 867 – 874. DOI: https://doi.org/10.1109/TPWRS.2005.846044

S. Haykin. “Neural networks a comprehensive foundation”. New York. Macmillan College Publishing Company.1994. 1ª ed. pp. 18 – 41.

F. Villada, W. Muñoz, A. Henao. “Pronóstico de las tasas de cambio. Una aplicación al Yen Japonés mediante redes neuronales artificiales”. Revista Scientia et Technica. Vol 12. 2006. pp. 233 – 238.

B. R. Szkuta, L. A. Sanabria, T. S. Dillon. “Electricity price short-term forecasting using artificial neural networks”. IEEE Transactions on Power Systems. Vol. 14. 1999. pp. 851 – 857. DOI: https://doi.org/10.1109/59.780895

E. Radwan. “Short term hourly load forecasting using abductive networks”. IEEE Transactions on Power Systems. Vol. 19. 2004. pp. 164 – 173. DOI: https://doi.org/10.1109/TPWRS.2003.820695

N. Amjady, M. Hemmati. “Energy price forecasting - problems and proposals for such predictions”. IEEE Power and Energy Magazine. Vol. 4. 2006. pp. 20 – 29. DOI: https://doi.org/10.1109/MPAE.2006.1597990

N. Gradojevic, J. Yang. The application of artificial neural networks to exchange rate forecasting: the role of market microstructure variables, Bank of Canada, Working paper 2000-23. 2000. pp. 10 – 27.

P. H. Franses, D. V. Dijk. Non-linear time series models in empirical finance. Cambridge University Press. 2000. pp. 222 - 233. DOI: https://doi.org/10.1017/CBO9780511754067

Published

2014-02-17

How to Cite

Villada, F., Cadavid, D. R., & Molina, J. D. (2014). Electricity price forecasting using artificial neural networks. Revista Facultad De Ingeniería Universidad De Antioquia, (44), 111–118. https://doi.org/10.17533/udea.redin.18508

Most read articles by the same author(s)