First-principles calculations of the pressure dependence on the structural and electronic properties of GaN/CrN superlattice

Authors

DOI:

https://doi.org/10.17533/udea.redin.n76a17

Keywords:

pressureeffects, superlattice, electronic properties

Abstract

This work provides fi rst-principle calculations to investigate how pressureaffects the electronic and magnetic properties of 1x1-GaN/CrN superlattice. A methodbased on Full-Potential Linearized Augmented Plane Waves (FP-LAPW) is used exactly asimplemented in code Wien2k. It was found that the most favorable phase for 1x1-GaN/CrNsuperlattice is the hexagonal wurtzite type, and also that, due to pressure, the superlatticecan reach the NaCl phase, with a transition pressure PT1 = 13.5 GPa. Additionally, in themost favorable phase, it was observed that the magnetic moment changes from 0 to 2.1 μβfor a transition pressure PT2 = 25.50 GPa. From the calculations of the density states, it canbe stated that the superlattice exhibits a half-metallic behavior at equilibrium pressure.Moreover, at high pressures P > PT2, the superlattice exhibits a metallic behavior. Theevidence indicates that the superlattice may be used in spintronics.

|Abstract
= 197 veces | PDF
= 167 veces|

Downloads

Download data is not yet available.

Author Biographies

Miguel José Espitia-Rico, University Francisco Jose de Caldas

Study Group on Physics, Statistics and Mathematics (GEFEM), Faculty of Engineering.

John Hernán Díaz-Forero, University Francisco Jose de Caldas

Study Group on Physics, Statistics and Mathematics (GEFEM), Faculty of Engineering.

Luis Eduardo Castillo-Méndez, University Francisco Jose de Caldas

Study Group on Physics, Statistics and Mathematics (GEFEM), Faculty of Engineering.

References

A. Zaoui, S. Kacimi, B. Bouhafs, A. Roula. “First-principles study of bonding mechanisms in the seriesof Ti, V, Cr, Mo, and their carbides and nitrides”. PhysicaB: Condesed Matter. Vol. 358. 2005. pp. 63-71.

Z. Dridi, B Bouhafs, P. Ruterana, H. Aourag. “First-principles calculations of vacancy effects on structuraland electronic properties of TiCxand TiNx”. JournalPhysic Condensed Matter. Vol. 14. 2002. pp. 10237-10249.

I. Pollini, A. Mosser, J. Parlebas. “Electronic,spectroscopic and elastic properties of early transitionmetal compounds”. Physics Reports. Vol. 355. 2001.pp.1-72.

O. Arbouche, B. Belgoumène, B. Soudini, M. Driz.“First principles study of the relative stability and theelectronic properties of GaN”. Computational MaterialsScience. Vol. 47. 2009. pp. 432-438.

J. Wagner, F. Bechstedt. “Properties of strainedwurtzite GaN and AlN: Ab initio studies”. PhysicalReview B. Vol. 66. 2002. pp. 115202(1)-115202(20).

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T.Yamada, T. Matsushita, et al. “Room-temperaturecontinuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours”.Appl. Phys. Lett. Vol. 70. 1997. pp. 1417-1421.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama.“High‐power InGaN single‐quantum‐well‐structureblue and violet light‐emitting diodes”. Applied PhysicsLetters. Vol. 67. 1995. pp. 1868-1871.

H. Bar, S. Zamir, O. Katz, B. Meyler, J. Salzman. “GaNlayer growth optimization for high power devices”.Materials Science and Engineering A. Vol. 302. 2001. pp.14-17.

K. Sato, P. Dederics, H. Katayama. “Curie temperaturesof III–V diluted magnetic semiconductors calculatedfrom first principles”. Europhysics Letters. Vol. 61.2003. pp. 403-408.

A. Houari, S. Matar, M. Belkhir. “Stability and magneticproperties of Mn-substituted ScN semiconductor fromfirst principles”. Computational Materials Science. Vol.43. 2008. pp. 392-398.

P. Blaha, K. Schwarz, S. Trickey. “Electronic Structureof solids whit WIEN2k”. Molecular Physics. Vol. 108. 2010. pp. 3147-3166.

J. Perdew, K. Burke, M. Ernzerhof. “Generalizedgradient approximation made simple”. Physical ReviewLetter. Vol. 77. 1996. pp. 3865-3868.

R. González, W. López, J. Rodríguez. “First-principlescalculations of structural properties of GaN–V”. SolidState Communications. Vol. 144. 2007. pp. 109-113.

L. Mancera, J. Rodríguez, N. Takeuchi. “Theoreticalstudy of the stability of wurtzite, zinc-blende, NaCland CsCl phases in group IIIB and IIIA nitrides”. Phys.Status Solid B. Vol. 241. 2004. pp. 2424-2429.

N. Takeuchi. “First-principles calculations of theground-state properties and stability of ScN”. PhysicalRewiew B. Vol. 65. 2002. pp. 1-4.

L. Yanlu, F. Weiliu, S. Honggang, C. Xiufeng, Z. Xian, J.Minhua. “Nitrogen vacancy and ferromagnetism in

Cr-doped GaN: First-principles calculations”. Journal ofSolid State Chemistry. Vol. 183. 2010. pp. 2662-2668.

M. Espitia, C. Ortega, G. Casiano. “Multicapa TiN/GaN:un estudio ab initio”. Revista colombiana de Física. Vol. 43.2011. pp. 408-410.

M. Espitia, C. Ortega, J. Díaz. “Theoretical study of thestructural and electronic properties of the ScxCr1-xNcompound”. Revista Latinoamericana de Metalurgia yMateriales. Vol. 36. 2015. pp. 12-19.

R. González, W. López, F. Fajardo, J. Rodríguez. “Pressureeffects on the electronic and magnetic properties of GaxV1−xN compounds: Ab-initio study”. Materials Science andEngineering B. Vol. 163. 2009. pp. 190-193.

S. Jhi, J. Ihm, S. Louie, M. Cohen. “Electronic mechanism ofhardness enhancement in transition-metal carbonitrides”.Nature. Vol. 399. 1999. pp. 132-134.

Downloads

Published

2015-09-27

How to Cite

Espitia-Rico, M. J., Díaz-Forero, J. H., & Castillo-Méndez, L. E. (2015). First-principles calculations of the pressure dependence on the structural and electronic properties of GaN/CrN superlattice. Revista Facultad De Ingeniería Universidad De Antioquia, (76), 143–147. https://doi.org/10.17533/udea.redin.n76a17