On the thermodynamics of electrolyte solutions
DOI:
https://doi.org/10.17533/udea.redin.20146Keywords:
Electrolyte solutions, thermodynamics, modeling, Debye-Hückel, NRTL-E, unified approachAbstract
The basic theoretical physical chemistry elements of electrolyte solutions are presented and subject to reflection, searching for a connection between the characteristic molecular aspects and the semi empirical thermodynamic models development, suitable for properties calculation. A general view of the historical development of models for electrolyte solutions is presented and the Debye-Hückel and NRTL-E models are adopted for describe qualitatively and quantitatively by virtual experimentation, the performance of solvent-inorganic electrolyte binary systems. The multielectrolyte solutions problem is addressed describing the fundamental characteristics of the unified approach model which is coupled to the NRTL-E model, allowing the treatment generalization without the inclusion of additional empirical parameters and with interesting contributions to theoretical understanding.
Downloads
References
C. C. Chen; C. P. Bokis; P. Mathias, “Segment-based excess Gibbs energy model for aqueous organic electrolytes”, AIChE Journal. 2001. Vol. 47. pp. 2593-2602. DOI: https://doi.org/10.1002/aic.690471122
J. F. Brennecke; E. J. Maginn, “Ionic liquids: innovative fluids for chemical processing”, AIChE Journal, 2001. Vol. 47. pp. 2384-2389. DOI: https://doi.org/10.1002/aic.690471102
J. Y. Huh; Y. Ch. Bae, “Water activities of florinated solid polimer electrolyte/water systems using group-contribution method”, Chem. Eng. Sci, 2002. Vol. 57. pp. 2747-2752. DOI: https://doi.org/10.1016/S0009-2509(02)00130-6
J. Y. Huh; Y. Ch. Bae. “Vapor-liquid equilibria of perflori-nated SPE/fuel system using group-contribution method”, Electrochimica Acta, 2001. Vol. 46. pp. 3535-3541. DOI: https://doi.org/10.1016/S0013-4686(01)00661-2
Ch. Ch. Chen; H. I. Britt; J. F. Boston; L. B. Evans. “Local composition model for the excess Gibbs energy of aqueous electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems”, AIChE Journal. 1982. Vol. 28. pp. 588-596. DOI: https://doi.org/10.1002/aic.690280410
Y. Guerasimov; V. Dreving; E. Eriomin; A. Kiseliov; V. Lebedev; G. Pachenkov; A. Shliguin. “Curso de química física”. Tomo II. Editorial MIR. Moscú. 1980. pp. 414-419.
K. S. Pitzer, “Thermodynamics”, International Edition, McGraw-Hill. Singapur, 1995. p. 254002E.
J. R. Loehe; M. D. Donohue, “Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems”, AIChE Journal. 1997. Vol. 43. pp. 180-195. DOI: https://doi.org/10.1002/aic.690430121
C. C. Chen; L. B. Evans, “A Local composition model for the excess Gibbs energy of aqueous electrolyte systems”, AIChE Journal, 1986. Vol. 32. pp. 444-454. DOI: https://doi.org/10.1002/aic.690320311
C. C.Chen; P. M. Mathias; H. Orbey, “Use of the hydration and dissociation chemistries with the Electrolyte-NRTL model”, AIChE Journal, 1999. Vol. 45. pp. 1576-1586. DOI: https://doi.org/10.1002/aic.690450719
B. Mock; L. B. Evans; Ch. Ch. Chen, “Thermodynamic representation of phase equilibia of mixed-solvent electrolyte systems”, AIChE Journal, 1986. Vol. 32. pp. 1655-1664. DOI: https://doi.org/10.1002/aic.690321009
L. J. Janson; I. A. Furzer, “A comparison of thermo-dynamic models for VLE data in electrolyte systems”, AIChE Journal, 1989. Vol. 35. pp. 1044-1048. DOI: https://doi.org/10.1002/aic.690350619
V. S. Patwardhan; A. Kumar, “A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part I: vapor pressure and heat of vaporization”, AIChE Journal,. 1986. Vol. 32. pp. 1419-1427. DOI: https://doi.org/10.1002/aic.690320903
H. P. Meissner; J. W. Tester, “Activity coefficients of strong electrolytes in aqueous solutions”, Ind. Eng. Chem. Process Des. Develop, 1972. Vol. 11. pp. 128-133. DOI: https://doi.org/10.1021/i260041a025
V. S. Patwardhan; A. Kumar, “A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II: volume, thermal, and other properties”, AIChE Journal, 1986. Vol. 32. pp. 1429-1437. DOI: https://doi.org/10.1002/aic.690320904
A. Kumar; V. S. Patwardhan, “Activity coefficients in mixed aqueous electrolyte solutions with a common ion”, AIChE Journal,. 1992. Vol. 38. pp. 793-796. DOI: https://doi.org/10.1002/aic.690380517
C. C. Chen; P. M. Mathias, “Applied thermodynamics for process modeling”, AIChE Journal, 2002. Vol. 48. pp. 194-200. DOI: https://doi.org/10.1002/aic.690480202
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.