On the thermodynamics of electrolyte solutions

Authors

  • Wilmar Osorio-Viana Universidad Nacional de Colombia
  • Óscar Hernán Giraldo-Osorio Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.redin.20146

Keywords:

Electrolyte solutions, thermodynamics, modeling, Debye-Hückel, NRTL-E, unified approach

Abstract

The basic theoretical physical chemistry elements of electrolyte solutions are presented and subject to reflection, searching for a connection between the characteristic molecular aspects and the semi empirical thermodynamic models development, suitable for properties calculation. A general view of the historical development of models for electrolyte solutions is presented and the Debye-Hückel and NRTL-E models are adopted for describe qualitatively and quantitatively by virtual experimentation, the performance of solvent-inorganic electrolyte binary systems. The multielectrolyte solutions problem is addressed describing the fundamental characteristics of the unified approach model which is coupled to the NRTL-E model, allowing the treatment generalization without the inclusion of additional empirical parameters and with interesting contributions to theoretical understanding.

|Abstract
= 309 veces | PDF (ESPAÑOL (ESPAÑA))
= 229 veces|

Downloads

Download data is not yet available.

Author Biographies

Wilmar Osorio-Viana, Universidad Nacional de Colombia

Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura

Óscar Hernán Giraldo-Osorio, Universidad Nacional de Colombia

Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura

References

C. C. Chen; C. P. Bokis; P. Mathias, “Segment-based excess Gibbs energy model for aqueous organic electrolytes”, AIChE Journal. 2001. Vol. 47. pp. 2593-2602. DOI: https://doi.org/10.1002/aic.690471122

J. F. Brennecke; E. J. Maginn, “Ionic liquids: innovative fluids for chemical processing”, AIChE Journal, 2001. Vol. 47. pp. 2384-2389. DOI: https://doi.org/10.1002/aic.690471102

J. Y. Huh; Y. Ch. Bae, “Water activities of florinated solid polimer electrolyte/water systems using group-contribution method”, Chem. Eng. Sci, 2002. Vol. 57. pp. 2747-2752. DOI: https://doi.org/10.1016/S0009-2509(02)00130-6

J. Y. Huh; Y. Ch. Bae. “Vapor-liquid equilibria of perflori-nated SPE/fuel system using group-contribution method”, Electrochimica Acta, 2001. Vol. 46. pp. 3535-3541. DOI: https://doi.org/10.1016/S0013-4686(01)00661-2

Ch. Ch. Chen; H. I. Britt; J. F. Boston; L. B. Evans. “Local composition model for the excess Gibbs energy of aqueous electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems”, AIChE Journal. 1982. Vol. 28. pp. 588-596. DOI: https://doi.org/10.1002/aic.690280410

Y. Guerasimov; V. Dreving; E. Eriomin; A. Kiseliov; V. Lebedev; G. Pachenkov; A. Shliguin. “Curso de química física”. Tomo II. Editorial MIR. Moscú. 1980. pp. 414-419.

K. S. Pitzer, “Thermodynamics”, International Edition, McGraw-Hill. Singapur, 1995. p. 254002E.

J. R. Loehe; M. D. Donohue, “Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems”, AIChE Journal. 1997. Vol. 43. pp. 180-195. DOI: https://doi.org/10.1002/aic.690430121

C. C. Chen; L. B. Evans, “A Local composition model for the excess Gibbs energy of aqueous electrolyte systems”, AIChE Journal, 1986. Vol. 32. pp. 444-454. DOI: https://doi.org/10.1002/aic.690320311

C. C.Chen; P. M. Mathias; H. Orbey, “Use of the hydration and dissociation chemistries with the Electrolyte-NRTL model”, AIChE Journal, 1999. Vol. 45. pp. 1576-1586. DOI: https://doi.org/10.1002/aic.690450719

B. Mock; L. B. Evans; Ch. Ch. Chen, “Thermodynamic representation of phase equilibia of mixed-solvent electrolyte systems”, AIChE Journal, 1986. Vol. 32. pp. 1655-1664. DOI: https://doi.org/10.1002/aic.690321009

L. J. Janson; I. A. Furzer, “A comparison of thermo-dynamic models for VLE data in electrolyte systems”, AIChE Journal, 1989. Vol. 35. pp. 1044-1048. DOI: https://doi.org/10.1002/aic.690350619

V. S. Patwardhan; A. Kumar, “A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part I: vapor pressure and heat of vaporization”, AIChE Journal,. 1986. Vol. 32. pp. 1419-1427. DOI: https://doi.org/10.1002/aic.690320903

H. P. Meissner; J. W. Tester, “Activity coefficients of strong electrolytes in aqueous solutions”, Ind. Eng. Chem. Process Des. Develop, 1972. Vol. 11. pp. 128-133. DOI: https://doi.org/10.1021/i260041a025

V. S. Patwardhan; A. Kumar, “A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II: volume, thermal, and other properties”, AIChE Journal, 1986. Vol. 32. pp. 1429-1437. DOI: https://doi.org/10.1002/aic.690320904

A. Kumar; V. S. Patwardhan, “Activity coefficients in mixed aqueous electrolyte solutions with a common ion”, AIChE Journal,. 1992. Vol. 38. pp. 793-796. DOI: https://doi.org/10.1002/aic.690380517

C. C. Chen; P. M. Mathias, “Applied thermodynamics for process modeling”, AIChE Journal, 2002. Vol. 48. pp. 194-200. DOI: https://doi.org/10.1002/aic.690480202

Published

2014-07-31

How to Cite

Osorio-Viana, W., & Giraldo-Osorio, Óscar H. (2014). On the thermodynamics of electrolyte solutions. Revista Facultad De Ingeniería Universidad De Antioquia, (40), 7–21. https://doi.org/10.17533/udea.redin.20146