Robust tracking control for linear vibrating mechanical systems
DOI:
https://doi.org/10.17533/udea.redin.n75a20Keywords:
mass-spring-damper systems, multiple degrees-of-freedom mechanical systems, active vibration control, mechanical vibration systemsAbstract
A novel output feedback tracking control approach is proposed for underactuated linear mass-spring-damper vibrating mechanical systems of multiple degrees of freedom. The presented control design methodology considers robustness against unmodeled dynamics and external forces. The proposed control scheme only requires measurements of the position output variable. Tracking error integral compensation is properly used to avoid real-time disturbance estimation. Analytical and numerical results prove the effectiveness of the introduced active vibration control scheme for resonant and chaotic vibration attenuation on the output variable response.
Downloads
References
J. Han. “From PID to Active Disturbance Rejection Control”. IEEE Transaction on Industrial Electronics. Vol. 56. 2009. pp. 900-906.
Z. Gao. Active Disturbance Rejection Control: A Paradigm Shift in Feedback Control System Design. Proceedings of the American Control Conference. Minneapolis, USA. 2006. pp. 2399-2405.
M. Fliess, C. Join. “Model-free control”. International Journal of Control. Vol. 86. 2013. pp. 2228-2252.
B. Korenev, L. Reznikov. Dynamic Vibration Absorbers. 1st ed. Ed. John Wiley & Sons. Chichester, England. 1993. pp. 1-296.
F. Beltrán. “Variable frequency harmonic vibration suppression using active vibration absorption”. Rev. Fac. Ing. Univ. Ant. N.º 73. 2014. pp. 144-156.
F. Beltrán, G. Silva. “Adaptive-Like Vibration Control in Mechanical Systems with Unknown Parameters and Signals”. Asian J. Control. Vol. 15. 2013. pp. 1613- 1626.
F. Beltrán, G. Silva. “Active Vibration Control in Duffing Mechanical Systems Using Dynamic Vibration Absorbers”. Journal of Sound and Vibration. Vol. 333. 2014. pp. 3019-3030.
S. Zhou, J. Shi. “Active balancing and vibration control of rotating machinery: a survey”. Shock and Vibration Digest. Vol. 33. 2001. pp. 361-371.
J. Vance, F. Zeidan, B. Murphy. Machinery Vibratin and Rotordynamics. 1st ed. Ed. John Wiley & Sons. New Jersey, USA. 2010. pp. 71-114.
F. Beltrán, G. Silva, M. Arias. “Active Unbalance Control of Rotor Systems Using On-Line Algebraic Identification Methods”. Asian J. Control. Vol. 15. 2013. pp. 1627-1637.
K. Byung, R. Seung, P. Jong. “Development of a 3-axis desktop milling machine and a CNC system using advanced modern control algorithms”. International Journal of Precision Engineering and Manufacturing. Vol. 11. 2010. pp. 39-47.
F. Beltrán, E. Chavez, A. Favela, R. Vazquez. “Active Perturbation Rejection in Motion Control of Milling Machine Tools”. Rev. Fac. Ing. Univ. Ant. N.° 69. 2013. pp. 193-204.
E. Chavez, F. Beltrán, A. Valderrabano, A. Favela. “Active Vibration Control of Vehicle Suspension Systems Using Sliding Modes, Differential Flatness and Generalized Proportional-Integral Control”. Rev. Fac. Ing. Univ. Ant. N.° 61. 2011. pp. 104-113.
S. Rao. Mechanical Vibrations. 5th ed. Ed. Prentice Hall. New Jersey, USA. 2011. pp. 10-13.
S. Braun, D. Ewins, S. Rao. Encyclopedia of Vibration. 1st ed. Ed. Academic Press. London, UK. 2002. pp. 1-26.
A. Piersol, T. Paez. Harris’s Shock and Vibration Handbook. 6th ed. Ed. McGraw-Hill. Columbus, USA. 2010. pp. 6.1-6.33.
H. Sira, F. Beltrán, A. Blanco. “A Generalized Proportional Integral Output Feedback Controller for the Robust Perturbation Rejection in a Mechanical System”. Sciences et Technologies de l’Automatique. Vol. 5. 2008. pp. 24-32.
F. Beltrán, G. Silva, H. Sira. Active Vibration Absorbers Using Generalized PI and Sliding-Mode Control Techniques. Proceedings of the American Control Conference. Denver, USA. 2003. pp. 791-796.
M. Fliess, R. Marquez, E. Delaleau, H. Sira. “Correcteurs Proportionnels-Intégraux Généralisés”. ESAIM: Control, Optimization and Calculus of Variations. Vol. 7. 2002. pp. 23-41.
M. Fliess, J. Lévine, P. Martin, P. Rouchon. “Flatness and defect of nonlinear systems: introductory theory and examples”. International Journal of Control. Vol. 61. 1995. pp. 1327-1361.
H. Chen. “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping”. Journal of Sound and Vibration. Vol. 255. 2002. pp. 719-740.
H. Khalil. Nonlinear Systems. 3rd ed. Ed. Prentice Hall. New Jersey, USA. 2002. pp. 126-130.
W. Rugh. Linear System Theory. 2nd ed. Ed. Prentice Hall. New Jersey, USA. 1996. pp. 203-216.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.