Dynamic WDM-TDM Access Networks Featuring Wired-Wireless Convergence

Authors

DOI:

https://doi.org/10.17533/udea.redin.n78a14

Keywords:

convergence, dynamic architecture, passive optical network, apacity upgrade

Abstract

Growth in the use of devices with Internet access and migration of telecommunications to IP technology have made the bandwidth demanded by users appear for the first time in a long time a limited resource. Optical fiber is demonstrating to be the solution to this issue based on the capability to provide enough bandwidth to manage large volumes of data at high speed featuring low loss transmission. Passive optical networks (PON) are presented as an alternative with respect to conventional copper-based access networks due to the use of distribution passive elements, which have a lower maintenance cost as compared to its active counterpart. In addition, the optical fiber capacity provides a future-proof platform to support the forthcoming bandwidth requested in the access segment. This paper presents and demonstrates through practical and simulation data analysis a proposal for next generation PON based on Time Division Multiple Access (TDMA) and Wavelength Division Multiple Access (WDM). Complying with a typical PON power budget, the architecture envisages dynamic wavelength allocation and converged transport of wired and wireless services on an unified optical platform architecture.

|Abstract
= 191 veces | PDF
= 187 veces|

Downloads

Download data is not yet available.

Author Biographies

Elkin Fabián Aguas-Martínez, University Francisco Jose de Caldas

Engineering Division. Laboratory of Microwave Engineering, Electromagnetism and Radiation (LIMER), Faculty of Engineering.

Gustavo Adolfo Puerto-Leguizamón, University Francisco Jose de Caldas

Teacher. Laboratory of Microwave Engineering, Electromagnetism and Radiation (LIMER), Faculty of Engineering.

Carlos Arturo Suárez-Fajardo, University Francisco Jose de Caldas

Laboratory of Microwave Engineering, Electromagnetism and Radiation (LIMER), Faculty of Engineering.

References

R. Yadav, “Passive-optical-network- (PON-) based converged access network [Invited]”, IEEE/OSA Journal of Optical Communications and Networking, vol. 4, no. 11, pp. B124-B130, 2012.

Cisco, The Zettabyte Era: Trends and Analysis, 2015. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-indexvni/VNI_Hyperconnectivity_WP.pdf. Accessed on: Mar. 20, 2015.

Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019, 2015. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf. Accessed on: Mar. 20, 2015.

G. Venkatesan and K. Kulkarni, “Wireless backhaul for LTE-requirements, challenges and options”, in 2 nd International Symposium on Advanced Networks and Telecommunication Systems (ANTS), Mumbai, India, 2008, pp. 1-3.

M. Ali, G. Ellinas, H. Erkan, A. Hadjiantonis and R. Dorsinville, “On the Vision of Complete Fixed-Mobile Convergence”, Journal of Lightwave Technology , vol. 28, no. 16, pp. 2343-2357, 2010.

A. Buttaboni, M. de Andrade and M. Tornatore, “Dynamic bandwidth and wavelength allocation with coexistence of transmission technologies in TWDM PONs”, in 16 th International Telecommunications Network Strategy and Planning Symposium (Networks), Funchal, Portugal, 2014, pp. 1-6.

F. Effenberger, “PON Resilience [invited]”, Journal of Optical Communications and Networking, vol. 7, no. 3, pp. A547-A552, 2015.

F. Selmanovic and E. Skaljo, “GPON in Telecommunication Network”, in International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 2010, pp. 1012-1016.

G. Keiser, “GPON Characteristics”, in FTTX Concepts and Applications, 1 st ed. Hoboken, USA: John Wiley & Sons, Inc., 2006, pp. 155-169.

A. Koonen, N. Tran and E. Tangdiongga, “The merits of reconfigurability in WDM-TDM optical in-building networks”, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, USA, 2011, pp. 1-3.

G. Puerto and C. Suárez, “Analytical model of signal generation for radio over fiber systems”, DYNA, vol. 81, no. 188, pp. 26-33, 2014.

K. Miyamoto et al. , “Transmission Performance Investigation of RF Signal in RoF-DAS Over WDM-PON With Bandpass-Sampling and Optical TDM”, Journal of Lightwave Technology, vol. 31, no. 22, pp. 3477- 3488, 2013.

Rohde & Schwarz, LTE: System Specifications and Their Impact on RF & Base Band Circuits, 2013. [Online]. Available: http://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma221/1MA221_1e_LTE_system_specifications.pdf. Accessed on: Apr. 3, 2015.

Downloads

Published

2016-03-18

How to Cite

Aguas-Martínez, E. F., Puerto-Leguizamón, G. A., & Suárez-Fajardo, C. A. (2016). Dynamic WDM-TDM Access Networks Featuring Wired-Wireless Convergence. Revista Facultad De Ingeniería Universidad De Antioquia, (78), 105–111. https://doi.org/10.17533/udea.redin.n78a14

Most read articles by the same author(s)