Machine vision system for weed detection using image filtering in vegetables crops
DOI:
https://doi.org/10.17533/udea.redin.n80a13Keywords:
weed detection, machine vision, weed removal, discriminate cropAbstract
This work presents a machine vision system for weed detection in vegetable crops using outdoor images, avoiding lighting and sharpness problems during acquisition step. This development will be a module for a weed removal mobile robot with camera obscura (Latin for “dark room”) for lighting controlled conditions. The purpose of this paper is to develop a useful algorithm to discriminate weed, using image filtering to extract color and area features, then, a process to label each object in the scene is implemented, finally, a classification based on area is proposed, including sensitivity, specificity, positive and negative predicted values in order to evaluate algorithm performance.
Downloads
References
M. Mustafa, A. Hussain, K. Ghazali and S. Riyadi, “Implementation of Image Processing Technique in Real Time Vision System for Automatic Weeding Strategy”, in IEEE International Symposium on Signal Processing and Information Technology, Giza, Egypt, 2007, pp. 632-635.
A. Tellaeche, G. Pajares, X. Burgos and A. Ribeiro, “A computer vision approach for weeds identification through Support Vector Machines”, Applied Soft Computing, vol. 11, pp. 908-915, 2011.
A. Tellaeche, X. Burgos, G. Pajares and A. Ribeiro, “A vision-based method for weeds identification through the Bayesian decision theory”, Pattern Recognition, vol. 41, pp. 521-530, 2008.
H. Liu, S. Lee and C. Saunders, “Development of a machine vision system for weed detection during both of off-season and in-season in broadacre no-tillage cropping lands”, American Journal of Agricultural and Biological Sciences, vol. 9, pp. 174-193, 2014.
A. Shinde and M. Shukla, “Crop detection by machine vision for weed management”, International Journal of Advances in Engineering & Technology, vol. 7, pp. 818- 826, 2014.
H. Jeon, L. Tian and H. Zhu, “Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination”, Sensors, vol. 11, pp. 6270-6283, 2011.
D. Woebbecke, G. Meyer, K. Von and D. Mortensen, “Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions”, Transactions of the ASAE, vol. 38, pp. 259-269, 1995.
A. Muangkasem, S. Thainimit, R. Keinprasit and T. Isshiki, “Weed Detection over Between-Row of Sugarcane Fields Using Machine Vision with Shadow Robustness Technique for Variable Rate Herbicide Applicator”, Energy Research Journal, vol. 1, no. 2, pp. 141-145, 2010.
D. Woebbecke, G. Meyer, K. Von and D. Mortensen, “Plant species identification, size, and enumeration using machine vision techniques on near-binary images”, in SPIE Conference on Optics in Agriculture and Forestry, Boston, USA, 1993, pp. 208-219.
A. Perez, F. Lopez, J. Benlloch and S. Christensen, “Colour and shape analysis techniques for weed detection in cereal fields”, Computers and Electronics in Agriculture, vol. 25, pp. 197-212, 2000.
L. Wiles, “Software to quantify and map vegetative cover in fallow fields for weed management decisions”,Computers and electronics in agriculture, vol. 78, pp. 106-115, 2011.
I. Pitas and A. Venetsanopoulos, Nonlinear digital filters: principles and applications, 1st ed. New York, USA: Springer, 1990.
B. Justusson, “Median Filtering: Statistical Properties”, in Two-Dimensional Digital Signal Prcessing II, T. Huang (ed). Berlin, Germany: Springer, 2006, pp. 161-196.
N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man , and Cybernetics, vol. 9, no.1, pp. 62-66, 1979.
P. Soille, Morphological image analysis. Principles and applications, 2nd ed. Berlin, Germany: Springer, 2004.
J. Semmlow and B. Griffel, Biosignal and medical image processing, 3rd ed. Boca Raton, USA: CRC Press, 2014
L. Shapiro and M. Haralick, Computer and Robot Vision, 1st ed. Boston, USA: Addison-Wesley, 1992.
R. Kumar, K. Ramareddy and B. Rao, “A Simple Region Descriptor based on Object Area per Scan Line”, International Journal of Computer Applications, vol. 3, no. 7, pp. 24-27, 2010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
