Machine vision system for weed detection using image filtering in vegetables crops

Authors

  • Camilo Andrés Pulido-Rojas Militar University of New Granada
  • Manuel Alejandro Molina-Villa Militar University of New Granada
  • Leonardo Enrique Solaque-Guzmán Militar University of New Granada

DOI:

https://doi.org/10.17533/udea.redin.n80a13

Keywords:

weed detection, machine vision, weed removal, discriminate crop

Abstract

This work presents a machine vision system for weed detection in vegetable crops using outdoor images, avoiding lighting and sharpness problems during acquisition step. This development will be a module for a weed removal mobile robot with camera obscura (Latin for “dark room”) for lighting controlled conditions. The purpose of this paper is to develop a useful algorithm to discriminate weed, using image filtering to extract color and area features, then, a process to label each object in the scene is implemented, finally, a classification based on area is proposed, including sensitivity, specificity, positive and negative predicted values in order to evaluate algorithm performance.

|Abstract
= 433 veces | PDF
= 221 veces|

Downloads

Author Biographies

Camilo Andrés Pulido-Rojas, Militar University of New Granada

GIDAM Research Group, Faculty of Engineering.

Manuel Alejandro Molina-Villa, Militar University of New Granada

GIDAM Research Group, Faculty of Engineering.

Leonardo Enrique Solaque-Guzmán, Militar University of New Granada

GIDAM Research Group, Faculty of Engineering.

References

M. Mustafa, A. Hussain, K. Ghazali and S. Riyadi, “Implementation of Image Processing Technique in Real Time Vision System for Automatic Weeding Strategy”, in IEEE International Symposium on Signal Processing and Information Technology, Giza, Egypt, 2007, pp. 632-635.

A. Tellaeche, G. Pajares, X. Burgos and A. Ribeiro, “A computer vision approach for weeds identification through Support Vector Machines”, Applied Soft Computing, vol. 11, pp. 908-915, 2011.

A. Tellaeche, X. Burgos, G. Pajares and A. Ribeiro, “A vision-based method for weeds identification through the Bayesian decision theory”, Pattern Recognition, vol. 41, pp. 521-530, 2008.

H. Liu, S. Lee and C. Saunders, “Development of a machine vision system for weed detection during both of off-season and in-season in broadacre no-tillage cropping lands”, American Journal of Agricultural and Biological Sciences, vol. 9, pp. 174-193, 2014.

A. Shinde and M. Shukla, “Crop detection by machine vision for weed management”, International Journal of Advances in Engineering & Technology, vol. 7, pp. 818- 826, 2014.

H. Jeon, L. Tian and H. Zhu, “Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination”, Sensors, vol. 11, pp. 6270-6283, 2011.

D. Woebbecke, G. Meyer, K. Von and D. Mortensen, “Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions”, Transactions of the ASAE, vol. 38, pp. 259-269, 1995.

A. Muangkasem, S. Thainimit, R. Keinprasit and T. Isshiki, “Weed Detection over Between-Row of Sugarcane Fields Using Machine Vision with Shadow Robustness Technique for Variable Rate Herbicide Applicator”, Energy Research Journal, vol. 1, no. 2, pp. 141-145, 2010.

D. Woebbecke, G. Meyer, K. Von and D. Mortensen, “Plant species identification, size, and enumeration using machine vision techniques on near-binary images”, in SPIE Conference on Optics in Agriculture and Forestry, Boston, USA, 1993, pp. 208-219.

A. Perez, F. Lopez, J. Benlloch and S. Christensen, “Colour and shape analysis techniques for weed detection in cereal fields”, Computers and Electronics in Agriculture, vol. 25, pp. 197-212, 2000.

L. Wiles, “Software to quantify and map vegetative cover in fallow fields for weed management decisions”,Computers and electronics in agriculture, vol. 78, pp. 106-115, 2011.

I. Pitas and A. Venetsanopoulos, Nonlinear digital filters: principles and applications, 1st ed. New York, USA: Springer, 1990.

B. Justusson, “Median Filtering: Statistical Properties”, in Two-Dimensional Digital Signal Prcessing II, T. Huang (ed). Berlin, Germany: Springer, 2006, pp. 161-196.

N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man , and Cybernetics, vol. 9, no.1, pp. 62-66, 1979.

P. Soille, Morphological image analysis. Principles and applications, 2nd ed. Berlin, Germany: Springer, 2004.

J. Semmlow and B. Griffel, Biosignal and medical image processing, 3rd ed. Boca Raton, USA: CRC Press, 2014

L. Shapiro and M. Haralick, Computer and Robot Vision, 1st ed. Boston, USA: Addison-Wesley, 1992.

R. Kumar, K. Ramareddy and B. Rao, “A Simple Region Descriptor based on Object Area per Scan Line”, International Journal of Computer Applications, vol. 3, no. 7, pp. 24-27, 2010.

Downloads

Published

2016-09-15

How to Cite

Pulido-Rojas, C. A., Molina-Villa, M. A., & Solaque-Guzmán, L. E. (2016). Machine vision system for weed detection using image filtering in vegetables crops. Revista Facultad De Ingeniería Universidad De Antioquia, (80), 124–130. https://doi.org/10.17533/udea.redin.n80a13
Citations
  • Citation Indexes: 24
Usage
  • Full Text Views: 4339
  • Abstract Views: 57
Captures
  • Readers: 66

Most read articles by the same author(s)