Application of Weibull analysis and artificial neural networks to predict the useful life of the vacuum packed soft cheese

Authors

DOI:

https://doi.org/10.17533/udea.redin.n82a07

Keywords:

weibull analysis, artificial neural networks, mean square error, shelf life

Abstract

The objective of this work was to evaluate the capability of artificial neural networks (ANN) to predict shelf life and the acidity on vacuum packed fresh cheese. First, cheese samples, of 200 g per unit, were prepared; then these samples were stored for 2 to 4 days at temperatures of 4, 10 and 16 ° C and relative humidity of 67.5%. Throughout the storage, the acidity (AC) and sensorial acceptability were determined; this acceptability was used to determine the Shelf life time (SLT) by modified Weibull sensory risk method. A set of artificial neural networks (ANN) was created and trained; temperatures (T), maturation time (M) and failure possibility (F(x)) were used as inputs and SLT and AC as outputs. From this set, the networks with the lowest mean squared error (MSE) and best fit (R2) were selected. These networks showed correlation coefficients (R2) of 0.9996 and 0.6897 for SLT and AC respectively, and good accuracy compared with regression models. It is shown that the ANN can be used to adequately model the SLT and, to a lesser degree, the AC of vacuum-packed fresh cheeses.

|Abstract
= 451 veces | PDF
= 284 veces|

Downloads

Download data is not yet available.

Author Biographies

Jimy Frank Oblitas-Cruz, Private University of the North

Faculty of Engineering. Director of the Industrial Engineering career.

Jesús Alexander Sánchez-González, Private University of the North

Faculty of Engineering.

References

T. Labuza, “Application of chemical kinetics to deterioration of foods,” Journal of Chemical Education, vol. 61, no. 4, pp. 348-358, 1984.

S. Pezo, Queso cajamarquino de calidad. Experiencia de la Coordinadora del Sector de Derivados Lácteos de Cajamarca - Codelac. Lima, Peru: Soluciones Prácticas- ITDG (Intermediate Technology Development Group), 2007.

F. Boucher and M. Guégan, Queserías rurales en Cajamarca. Lima, Peru: ITDG (Intermediate Technology Development Group), 2004.

F. Boucher and D. Desjardins, “La concentración de las queserías rurales de Cajamarca: retos y dificultades de una estrategia colectiva de activación,” Agroalimentaria, vol. 10, no. 21, pp. 13-27, 2005.

G. Hough and S. Fiszman, Estimación de la vida útil sensorial de los alimentos, 1st ed. Madrid, Spain: CYTED, 2005.

E. Al-Kadamany et al., “Determination of shelf life of concentrated yogurt (labneh) produced by in-bag straining of set yogurt using hazard analysis,” J. Dairy Sci., vol. 85, no. 5, pp. 1023-1030, 2002.

C. Cardelli and T. Labuza, “Application of Weibull Hazard Analysis to the Determination of the Shelf Life of Roasted and Ground Coffee,” LWT - Food Science and Technology, vol. 34, no. 5, pp. 273-278, 2001.

S. Goyal and G. Goyal, “Predicting shelf life of dairy product by using artificial neural networks (ANN) and statistical computerized methods,” International Journal of Computer Engineering Research, vol. 3, no. 2, pp. 20-24, 2012.

J. Paquet, C. Lacroix, and J. Thibault, “Modelling of pH and Acidity for Industrial Cheese,” J. of Dairy Sci., vol. 83, no. 11, pp. 2393-2409, 2000.

Indecopi (Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual), “Norma Técnica Peruana, NTP 202.151. Leche y productos lácteos. Queso. Determinación de acidez. Método de titulación”, Indecopi, Lima, Perú, 1998.

W. Duyvesteyn, E. Shimoni, and T. Labuza, “Determination of the end of shelf-life for milk using Weibull Hazard Method,” LWT - Food Science and Technology, vol. 34, no. 3, pp. 143-148, 2001.

J. Sánchez and J. Pérez, “Sensory shelf life of mantecoso cheese using accelerated testing,” Scientia Agropecuaria, vol. 7, pp. 215-222, 2016.

N. Lópes and C. Novoa, “Evaluación de la vida útil sensorial del queso doble crema con dos niveles de grasa,” Rev. Med. Vet. Med. Zoot., vol. 55, no. 2, pp. 91-99, 2008.

J. Rojas and V. Vásquez, “Predicción mediante redes neuronales artificiales (RNA) de la difusividad, masa, humedad, volumen y sólidos en yacón (Smallantus sonchifolius) deshidratado osmóticamente,” Scientia Agropecuaria, vol. 3, no. 3, pp. 201-214, 2012.

V. Vásquez and C. Lescano, “Predicción por redes neuronales artificiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempotemperatura de alimentación a evaporadordestilador flash,” Scientia Agropecuaria, vol. 1, no. 1, pp. 63-73, 2010.

P. Ponce, Inteligencia artificial con aplicaciones a la ingeniería, 1st ed. City of Mexico, Mexico: Alfaomega, 2010.

A. Sofu and F. Ekinci, “Estimation of Storage Time of Yogurt with Artificial Neural Network Modeling,” J. Dairy Sci., vol. 90, no. 7, pp. 3118-3125, 2007.

S. Goyal and G. Goyal, “A Novel Method for Shelf Life Detection of Processed Cheese Using Cascade Single and Multi Layer Artificial Neural Network Computing Models,” ARPN Journal of Systems and Software, vol. 2, no. 2, pp. 79-83, 2012.

S. Goyal and G. Goyal, “Radial Basis (Exact Fit) and Linear Layer (Design) ANN Models for Shelf Life Prediction of Processed Cheese,” International Journal of u- and e- Service, Science and Technology, vol. 5, no. 1, pp. 63-70, 2012.

S. Goyal and G. Goyal, “Artificial Neural Expert Computing Models for Determining Shelf Life of Processed Cheese,” International Journal of Electrical and Computer Engineering (IJECE), vol. 2, no. 3, pp. 333- 338, 2012.

S. Goyal and G. Goyal, “Artificial Neural Network Simulated Elman Models for Predicting Shelf Life of Processed Cheese,” International Journal of Applied Metaheuristic Computing, vol. 3, no. 3, pp. 20-32, 2012.

S. Goyal and G. Goyal, “Linear layer and generalized regression computational intelligence models for predicting shelf life of processed cheese,” Russian Journal of Agricultural and Socio-Economic Sciences, vol. 3, no. 3, pp. 28-32, 2012.

S. Goyal and G. Goyal, “Estimating Processed Cheese Shelf Life with Artificial Neural Networks,” International Journal of Artificial Intelligence (IJ-AI), vol. 1, no. 1, pp. 19-24, 2012.

S. Goyal and G. Goyal, “Smart Artificial Intelligence Computerized Models for Shelf Life Prediction of Processed Cheese,” International Journal of Engineering and Technology, vol. 1, no. 3, pp. 281-289, 2012.

S. Goyal and G. Goyal, “Artificial Intelligence Elman Backpropagation Computing Models for Predicting Shelf Life of Processed Cheese,” Internetworking Indonesia Journal, vol. 4, no. 1, pp. 3-7, 2012.

A. Motevali, S. Minaei, M. Khoshtaghaza, M. Kazemi, and A. Nikbakht, “Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks,” International Journal of Food Engineering, vol. 6, no. 3, pp. 1 19, 2010.

Downloads

Published

2017-03-16

How to Cite

Oblitas-Cruz, J. F., & Sánchez-González, J. A. (2017). Application of Weibull analysis and artificial neural networks to predict the useful life of the vacuum packed soft cheese. Revista Facultad De Ingeniería Universidad De Antioquia, (82), 53–59. https://doi.org/10.17533/udea.redin.n82a07